Properties

Label 2-4290-1.1-c1-0-29
Degree $2$
Conductor $4290$
Sign $1$
Analytic cond. $34.2558$
Root an. cond. $5.85284$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 2·7-s − 8-s + 9-s − 10-s − 11-s + 12-s + 13-s − 2·14-s + 15-s + 16-s + 6·17-s − 18-s − 4·19-s + 20-s + 2·21-s + 22-s − 24-s + 25-s − 26-s + 27-s + 2·28-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s + 0.277·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s − 0.917·19-s + 0.223·20-s + 0.436·21-s + 0.213·22-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s + 0.377·28-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4290\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(34.2558\)
Root analytic conductor: \(5.85284\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4290,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.213555463\)
\(L(\frac12)\) \(\approx\) \(2.213555463\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.411884509871141449848405339565, −7.78303263068434209188361162405, −7.23406670203208657754212995323, −6.22360673766385576108603240087, −5.56204544118864184221713825827, −4.63589838387406643649498577390, −3.65547500286167340749343972905, −2.68795237813587777818398218883, −1.88810453803998979041257935488, −0.955572802087036175683025383676, 0.955572802087036175683025383676, 1.88810453803998979041257935488, 2.68795237813587777818398218883, 3.65547500286167340749343972905, 4.63589838387406643649498577390, 5.56204544118864184221713825827, 6.22360673766385576108603240087, 7.23406670203208657754212995323, 7.78303263068434209188361162405, 8.411884509871141449848405339565

Graph of the $Z$-function along the critical line