Properties

Label 2-4144-1.1-c1-0-105
Degree $2$
Conductor $4144$
Sign $1$
Analytic cond. $33.0900$
Root an. cond. $5.75239$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 7-s + 9-s − 4·11-s − 6·13-s + 4·15-s − 4·17-s − 4·19-s − 2·21-s − 25-s + 4·27-s − 10·29-s − 2·31-s + 8·33-s − 2·35-s − 37-s + 12·39-s − 2·41-s + 4·43-s − 2·45-s + 49-s + 8·51-s + 6·53-s + 8·55-s + 8·57-s − 14·61-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 0.377·7-s + 1/3·9-s − 1.20·11-s − 1.66·13-s + 1.03·15-s − 0.970·17-s − 0.917·19-s − 0.436·21-s − 1/5·25-s + 0.769·27-s − 1.85·29-s − 0.359·31-s + 1.39·33-s − 0.338·35-s − 0.164·37-s + 1.92·39-s − 0.312·41-s + 0.609·43-s − 0.298·45-s + 1/7·49-s + 1.12·51-s + 0.824·53-s + 1.07·55-s + 1.05·57-s − 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4144\)    =    \(2^{4} \cdot 7 \cdot 37\)
Sign: $1$
Analytic conductor: \(33.0900\)
Root analytic conductor: \(5.75239\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 4144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
37 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40292247585398890371813166493, −7.23149601414821600235262873758, −6.04588321780968239786873666056, −5.42174750212442718983997255179, −4.70284925629556994475140295712, −4.17565602178245282151914638543, −2.86110434877472720495424861629, −1.96416416772468748823915300367, 0, 0, 1.96416416772468748823915300367, 2.86110434877472720495424861629, 4.17565602178245282151914638543, 4.70284925629556994475140295712, 5.42174750212442718983997255179, 6.04588321780968239786873666056, 7.23149601414821600235262873758, 7.40292247585398890371813166493

Graph of the $Z$-function along the critical line