Properties

Label 2-40656-1.1-c1-0-28
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s − 7-s + 9-s + 5·13-s − 3·15-s + 17-s − 6·19-s − 21-s + 4·23-s + 4·25-s + 27-s + 29-s + 6·31-s + 3·35-s − 3·37-s + 5·39-s + 9·41-s + 10·43-s − 3·45-s + 10·47-s + 49-s + 51-s + 3·53-s − 6·57-s + 2·59-s + 6·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s + 1.38·13-s − 0.774·15-s + 0.242·17-s − 1.37·19-s − 0.218·21-s + 0.834·23-s + 4/5·25-s + 0.192·27-s + 0.185·29-s + 1.07·31-s + 0.507·35-s − 0.493·37-s + 0.800·39-s + 1.40·41-s + 1.52·43-s − 0.447·45-s + 1.45·47-s + 1/7·49-s + 0.140·51-s + 0.412·53-s − 0.794·57-s + 0.260·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.273580472\)
\(L(\frac12)\) \(\approx\) \(2.273580472\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 17 T + p T^{2} \) 1.89.r
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.75812486899833, −14.35465412174505, −13.69748554917827, −13.22903638515481, −12.50566567065365, −12.44952505649066, −11.52210749592867, −11.15944599549315, −10.59716796894244, −10.17737053756980, −9.188181971257427, −8.911198475610054, −8.302479766827623, −7.981442486081686, −7.243728612470057, −6.822743185984423, −6.107036981216339, −5.560323539798254, −4.468176008765724, −4.131470814782091, −3.702509416519987, −2.928265325412799, −2.405707611435908, −1.243070098831822, −0.5910429549601690, 0.5910429549601690, 1.243070098831822, 2.405707611435908, 2.928265325412799, 3.702509416519987, 4.131470814782091, 4.468176008765724, 5.560323539798254, 6.107036981216339, 6.822743185984423, 7.243728612470057, 7.981442486081686, 8.302479766827623, 8.911198475610054, 9.188181971257427, 10.17737053756980, 10.59716796894244, 11.15944599549315, 11.52210749592867, 12.44952505649066, 12.50566567065365, 13.22903638515481, 13.69748554917827, 14.35465412174505, 14.75812486899833

Graph of the $Z$-function along the critical line