Properties

Label 40656.bw
Number of curves $1$
Conductor $40656$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 40656.bw1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 40656.bw do not have complex multiplication.

Modular form 40656.2.a.bw

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 3 q^{5} - q^{7} + q^{9} + 5 q^{13} - 3 q^{15} + q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 40656.bw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
40656.bw1 40656cs1 \([0, 1, 0, -1644672, 812353716]\) \(-4631003113/7056\) \(-749627260865150976\) \([]\) \(1013760\) \(2.3298\) \(\Gamma_0(N)\)-optimal