Properties

Label 2-398400-1.1-c1-0-4
Degree $2$
Conductor $398400$
Sign $1$
Analytic cond. $3181.24$
Root an. cond. $56.4024$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s + 3·11-s − 6·13-s + 4·17-s − 3·19-s + 4·21-s − 23-s − 27-s − 4·29-s + 2·31-s − 3·33-s + 3·37-s + 6·39-s + 6·41-s + 12·43-s + 9·49-s − 4·51-s − 9·53-s + 3·57-s − 7·59-s + 61-s − 4·63-s − 7·67-s + 69-s − 4·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s + 0.904·11-s − 1.66·13-s + 0.970·17-s − 0.688·19-s + 0.872·21-s − 0.208·23-s − 0.192·27-s − 0.742·29-s + 0.359·31-s − 0.522·33-s + 0.493·37-s + 0.960·39-s + 0.937·41-s + 1.82·43-s + 9/7·49-s − 0.560·51-s − 1.23·53-s + 0.397·57-s − 0.911·59-s + 0.128·61-s − 0.503·63-s − 0.855·67-s + 0.120·69-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 398400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 398400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(398400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(3181.24\)
Root analytic conductor: \(56.4024\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 398400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4000169622\)
\(L(\frac12)\) \(\approx\) \(0.4000169622\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
83 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.40697309371696, −12.15870002578754, −11.69599197690091, −10.98595680155878, −10.65913341759554, −10.14638067741305, −9.613427496485473, −9.353054614704198, −9.219696327360085, −8.286531252518389, −7.648523191858636, −7.448388471438079, −6.813894955847327, −6.433057205533278, −6.022322244198530, −5.583340894179643, −5.042711207913748, −4.263345183539766, −4.130535075181663, −3.422314586355747, −2.770263009853869, −2.497514761579964, −1.612286927751797, −0.9725663972447573, −0.1915748125626917, 0.1915748125626917, 0.9725663972447573, 1.612286927751797, 2.497514761579964, 2.770263009853869, 3.422314586355747, 4.130535075181663, 4.263345183539766, 5.042711207913748, 5.583340894179643, 6.022322244198530, 6.433057205533278, 6.813894955847327, 7.448388471438079, 7.648523191858636, 8.286531252518389, 9.219696327360085, 9.353054614704198, 9.613427496485473, 10.14638067741305, 10.65913341759554, 10.98595680155878, 11.69599197690091, 12.15870002578754, 12.40697309371696

Graph of the $Z$-function along the critical line