Properties

Label 2-39600-1.1-c1-0-51
Degree $2$
Conductor $39600$
Sign $1$
Analytic cond. $316.207$
Root an. cond. $17.7822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 11-s + 6·13-s + 2·17-s − 4·19-s − 6·23-s + 2·29-s − 8·31-s + 8·37-s − 6·41-s + 12·43-s − 10·47-s + 9·49-s − 4·59-s − 10·61-s + 2·67-s − 8·71-s − 2·73-s + 4·77-s − 4·79-s + 4·83-s + 14·89-s + 24·91-s + 4·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.51·7-s + 0.301·11-s + 1.66·13-s + 0.485·17-s − 0.917·19-s − 1.25·23-s + 0.371·29-s − 1.43·31-s + 1.31·37-s − 0.937·41-s + 1.82·43-s − 1.45·47-s + 9/7·49-s − 0.520·59-s − 1.28·61-s + 0.244·67-s − 0.949·71-s − 0.234·73-s + 0.455·77-s − 0.450·79-s + 0.439·83-s + 1.48·89-s + 2.51·91-s + 0.406·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 39600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(39600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(316.207\)
Root analytic conductor: \(17.7822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 39600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.262576083\)
\(L(\frac12)\) \(\approx\) \(3.262576083\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.75399690047446, −14.30263459735231, −13.88559629405687, −13.25521933128744, −12.78993988801142, −12.02650593407746, −11.67907698085934, −10.97805171475588, −10.83661568639745, −10.20860300351674, −9.344747013605740, −8.920282923462631, −8.224960630068043, −8.016458785688037, −7.416846157807032, −6.555336449893260, −5.984721601612912, −5.624914889765915, −4.732878629877993, −4.245340113096026, −3.739568267734295, −2.929507350263144, −1.807583563809322, −1.660916410543522, −0.6765698902685878, 0.6765698902685878, 1.660916410543522, 1.807583563809322, 2.929507350263144, 3.739568267734295, 4.245340113096026, 4.732878629877993, 5.624914889765915, 5.984721601612912, 6.555336449893260, 7.416846157807032, 8.016458785688037, 8.224960630068043, 8.920282923462631, 9.344747013605740, 10.20860300351674, 10.83661568639745, 10.97805171475588, 11.67907698085934, 12.02650593407746, 12.78993988801142, 13.25521933128744, 13.88559629405687, 14.30263459735231, 14.75399690047446

Graph of the $Z$-function along the critical line