Properties

Label 2-394944-1.1-c1-0-83
Degree $2$
Conductor $394944$
Sign $-1$
Analytic cond. $3153.64$
Root an. cond. $56.1573$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 2·7-s + 9-s + 4·13-s + 2·15-s − 17-s + 2·19-s + 2·21-s − 2·23-s − 25-s − 27-s + 6·29-s − 8·31-s + 4·35-s − 2·37-s − 4·39-s + 2·41-s + 2·43-s − 2·45-s − 4·47-s − 3·49-s + 51-s − 12·53-s − 2·57-s − 10·59-s + 6·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 0.755·7-s + 1/3·9-s + 1.10·13-s + 0.516·15-s − 0.242·17-s + 0.458·19-s + 0.436·21-s − 0.417·23-s − 1/5·25-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.676·35-s − 0.328·37-s − 0.640·39-s + 0.312·41-s + 0.304·43-s − 0.298·45-s − 0.583·47-s − 3/7·49-s + 0.140·51-s − 1.64·53-s − 0.264·57-s − 1.30·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 394944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 394944 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(394944\)    =    \(2^{6} \cdot 3 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(3153.64\)
Root analytic conductor: \(56.1573\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 394944,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56946874996271, −12.22004683140717, −11.76617713307362, −11.25446174254624, −11.02102345282148, −10.50488855999606, −10.02533674025793, −9.527953921122925, −9.051918316556333, −8.610762133633881, −8.051954870128139, −7.603229907185894, −7.232033135872870, −6.562089511057831, −6.237481212800237, −5.868636353554856, −5.211233630562371, −4.707432920915127, −4.067307578440027, −3.827948902322906, −3.114698080512724, −2.884508721506372, −1.758595980125764, −1.423956990944254, −0.5262333858311785, 0, 0.5262333858311785, 1.423956990944254, 1.758595980125764, 2.884508721506372, 3.114698080512724, 3.827948902322906, 4.067307578440027, 4.707432920915127, 5.211233630562371, 5.868636353554856, 6.237481212800237, 6.562089511057831, 7.232033135872870, 7.603229907185894, 8.051954870128139, 8.610762133633881, 9.051918316556333, 9.527953921122925, 10.02533674025793, 10.50488855999606, 11.02102345282148, 11.25446174254624, 11.76617713307362, 12.22004683140717, 12.56946874996271

Graph of the $Z$-function along the critical line