Properties

Label 2-388700-1.1-c1-0-8
Degree $2$
Conductor $388700$
Sign $1$
Analytic cond. $3103.78$
Root an. cond. $55.7116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s − 2·9-s + 6·11-s − 2·19-s + 4·21-s − 23-s + 5·27-s + 9·29-s − 5·31-s − 6·33-s + 2·37-s + 9·41-s + 4·43-s − 3·47-s + 9·49-s + 6·53-s + 2·57-s + 2·61-s + 8·63-s − 10·67-s + 69-s + 3·71-s − 7·73-s − 24·77-s − 10·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s − 2/3·9-s + 1.80·11-s − 0.458·19-s + 0.872·21-s − 0.208·23-s + 0.962·27-s + 1.67·29-s − 0.898·31-s − 1.04·33-s + 0.328·37-s + 1.40·41-s + 0.609·43-s − 0.437·47-s + 9/7·49-s + 0.824·53-s + 0.264·57-s + 0.256·61-s + 1.00·63-s − 1.22·67-s + 0.120·69-s + 0.356·71-s − 0.819·73-s − 2.73·77-s − 1.12·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388700\)    =    \(2^{2} \cdot 5^{2} \cdot 13^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(3103.78\)
Root analytic conductor: \(55.7116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.178813151\)
\(L(\frac12)\) \(\approx\) \(1.178813151\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.42966285143252, −11.94787638371293, −11.68205311461800, −11.16994585476810, −10.66384269388182, −10.19375056659715, −9.766933658942793, −9.256716724551748, −8.874661376440142, −8.621186673226580, −7.875752781377125, −7.188938510828758, −6.831522063884842, −6.361809626735184, −6.040837984030049, −5.767625506869369, −5.006122642891376, −4.317088501732948, −4.009406208914748, −3.463396169820001, −2.814517375017215, −2.531799426194106, −1.540758395057018, −0.9662441578693582, −0.3427434476584267, 0.3427434476584267, 0.9662441578693582, 1.540758395057018, 2.531799426194106, 2.814517375017215, 3.463396169820001, 4.009406208914748, 4.317088501732948, 5.006122642891376, 5.767625506869369, 6.040837984030049, 6.361809626735184, 6.831522063884842, 7.188938510828758, 7.875752781377125, 8.621186673226580, 8.874661376440142, 9.256716724551748, 9.766933658942793, 10.19375056659715, 10.66384269388182, 11.16994585476810, 11.68205311461800, 11.94787638371293, 12.42966285143252

Graph of the $Z$-function along the critical line