Properties

Label 2-388416-1.1-c1-0-28
Degree $2$
Conductor $388416$
Sign $1$
Analytic cond. $3101.51$
Root an. cond. $55.6912$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s + 7-s + 9-s + 2·11-s + 2·13-s + 4·15-s − 4·19-s − 21-s − 6·23-s + 11·25-s − 27-s − 10·29-s − 8·31-s − 2·33-s − 4·35-s + 10·37-s − 2·39-s + 4·41-s − 8·43-s − 4·45-s + 4·47-s + 49-s − 10·53-s − 8·55-s + 4·57-s + 8·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s + 0.377·7-s + 1/3·9-s + 0.603·11-s + 0.554·13-s + 1.03·15-s − 0.917·19-s − 0.218·21-s − 1.25·23-s + 11/5·25-s − 0.192·27-s − 1.85·29-s − 1.43·31-s − 0.348·33-s − 0.676·35-s + 1.64·37-s − 0.320·39-s + 0.624·41-s − 1.21·43-s − 0.596·45-s + 0.583·47-s + 1/7·49-s − 1.37·53-s − 1.07·55-s + 0.529·57-s + 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388416\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(3101.51\)
Root analytic conductor: \(55.6912\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388416,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8010425187\)
\(L(\frac12)\) \(\approx\) \(0.8010425187\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.43734851866825, −11.81909146909128, −11.55613925832805, −11.09629738284852, −10.99005203137282, −10.43177851268513, −9.642425371906928, −9.349173110124695, −8.698498513646919, −8.235650747446820, −7.954695609659734, −7.333178244964659, −7.164927689369755, −6.406147660942755, −6.033092385518887, −5.509584221271152, −4.867599908256428, −4.215951190558519, −4.122990603955860, −3.594931423163173, −3.130952544420166, −2.081387295996789, −1.750876668860316, −0.8533763624282939, −0.3057632552232025, 0.3057632552232025, 0.8533763624282939, 1.750876668860316, 2.081387295996789, 3.130952544420166, 3.594931423163173, 4.122990603955860, 4.215951190558519, 4.867599908256428, 5.509584221271152, 6.033092385518887, 6.406147660942755, 7.164927689369755, 7.333178244964659, 7.954695609659734, 8.235650747446820, 8.698498513646919, 9.349173110124695, 9.642425371906928, 10.43177851268513, 10.99005203137282, 11.09629738284852, 11.55613925832805, 11.81909146909128, 12.43734851866825

Graph of the $Z$-function along the critical line