Properties

Label 2-388080-1.1-c1-0-261
Degree $2$
Conductor $388080$
Sign $-1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 11-s − 2·13-s − 2·17-s + 4·19-s + 25-s + 2·29-s − 2·37-s − 6·41-s − 8·47-s + 2·53-s + 55-s − 4·59-s + 10·61-s − 2·65-s − 4·67-s − 14·73-s − 16·79-s − 2·85-s + 10·89-s + 4·95-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.301·11-s − 0.554·13-s − 0.485·17-s + 0.917·19-s + 1/5·25-s + 0.371·29-s − 0.328·37-s − 0.937·41-s − 1.16·47-s + 0.274·53-s + 0.134·55-s − 0.520·59-s + 1.28·61-s − 0.248·65-s − 0.488·67-s − 1.63·73-s − 1.80·79-s − 0.216·85-s + 1.05·89-s + 0.410·95-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79504010561702, −12.09199780511862, −11.75492710598393, −11.52906971587350, −10.77472560107484, −10.44753450820133, −9.828138746601450, −9.697275401955715, −9.060514215288688, −8.627720985657865, −8.233592930184132, −7.563155817970910, −7.162184680052513, −6.735092745146894, −6.245300913223145, −5.710050982588885, −5.203917802331881, −4.804569235022949, −4.260428820241410, −3.672446214169037, −3.010484135553454, −2.721305775845087, −1.866036103677326, −1.550743275990736, −0.7574483744374510, 0, 0.7574483744374510, 1.550743275990736, 1.866036103677326, 2.721305775845087, 3.010484135553454, 3.672446214169037, 4.260428820241410, 4.804569235022949, 5.203917802331881, 5.710050982588885, 6.245300913223145, 6.735092745146894, 7.162184680052513, 7.563155817970910, 8.233592930184132, 8.627720985657865, 9.060514215288688, 9.697275401955715, 9.828138746601450, 10.44753450820133, 10.77472560107484, 11.52906971587350, 11.75492710598393, 12.09199780511862, 12.79504010561702

Graph of the $Z$-function along the critical line