Properties

Label 2-38720-1.1-c1-0-35
Degree $2$
Conductor $38720$
Sign $1$
Analytic cond. $309.180$
Root an. cond. $17.5835$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 3·9-s + 8·19-s + 8·23-s + 25-s + 10·29-s − 8·31-s − 2·35-s + 10·37-s + 2·41-s + 6·43-s − 3·45-s + 8·47-s − 3·49-s − 14·53-s − 4·59-s + 10·61-s + 6·63-s + 4·67-s + 8·73-s − 4·79-s + 9·81-s − 10·83-s + 6·89-s + 8·95-s − 10·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 9-s + 1.83·19-s + 1.66·23-s + 1/5·25-s + 1.85·29-s − 1.43·31-s − 0.338·35-s + 1.64·37-s + 0.312·41-s + 0.914·43-s − 0.447·45-s + 1.16·47-s − 3/7·49-s − 1.92·53-s − 0.520·59-s + 1.28·61-s + 0.755·63-s + 0.488·67-s + 0.936·73-s − 0.450·79-s + 81-s − 1.09·83-s + 0.635·89-s + 0.820·95-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38720\)    =    \(2^{6} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(309.180\)
Root analytic conductor: \(17.5835\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38720,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.465812132\)
\(L(\frac12)\) \(\approx\) \(2.465812132\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.57700544204270, −14.32003416357321, −13.88251883547191, −13.23060856633305, −12.77380878419759, −12.32657332264470, −11.59757986137552, −11.13970316851272, −10.74164895364978, −9.896316223709346, −9.486512274221251, −9.109920946946469, −8.529864291079791, −7.742775340863794, −7.317903197901654, −6.537063975979399, −6.168209967823882, −5.389292326079878, −5.129237082698562, −4.248359501682824, −3.312047148769456, −2.955554321537895, −2.437252888301206, −1.231038508683612, −0.6404986689455263, 0.6404986689455263, 1.231038508683612, 2.437252888301206, 2.955554321537895, 3.312047148769456, 4.248359501682824, 5.129237082698562, 5.389292326079878, 6.168209967823882, 6.537063975979399, 7.317903197901654, 7.742775340863794, 8.529864291079791, 9.109920946946469, 9.486512274221251, 9.896316223709346, 10.74164895364978, 11.13970316851272, 11.59757986137552, 12.32657332264470, 12.77380878419759, 13.23060856633305, 13.88251883547191, 14.32003416357321, 14.57700544204270

Graph of the $Z$-function along the critical line