Properties

Label 2-382800-1.1-c1-0-109
Degree $2$
Conductor $382800$
Sign $-1$
Analytic cond. $3056.67$
Root an. cond. $55.2871$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 11-s − 2·13-s + 2·17-s + 4·19-s − 8·23-s + 27-s − 29-s − 4·31-s − 33-s − 2·37-s − 2·39-s − 2·41-s + 4·43-s − 4·47-s − 7·49-s + 2·51-s − 6·53-s + 4·57-s − 4·59-s + 2·61-s − 4·67-s − 8·69-s + 16·71-s − 6·73-s + 8·79-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.301·11-s − 0.554·13-s + 0.485·17-s + 0.917·19-s − 1.66·23-s + 0.192·27-s − 0.185·29-s − 0.718·31-s − 0.174·33-s − 0.328·37-s − 0.320·39-s − 0.312·41-s + 0.609·43-s − 0.583·47-s − 49-s + 0.280·51-s − 0.824·53-s + 0.529·57-s − 0.520·59-s + 0.256·61-s − 0.488·67-s − 0.963·69-s + 1.89·71-s − 0.702·73-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(382800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 29\)
Sign: $-1$
Analytic conductor: \(3056.67\)
Root analytic conductor: \(55.2871\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 382800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 + T \)
29 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86460111677675, −12.19792376441452, −11.92325351651308, −11.34417234838694, −10.90800988819043, −10.30210543274910, −9.924155040237982, −9.521489216854097, −9.247067201001976, −8.461972959356237, −8.134562672600960, −7.704586626385910, −7.344157794824510, −6.787298888085921, −6.241238487611060, −5.644581816196963, −5.300928880340519, −4.675105016563897, −4.203733996541660, −3.560970834408763, −3.194409490485590, −2.654461760786369, −1.886499749204230, −1.679036738699500, −0.7232013481644255, 0, 0.7232013481644255, 1.679036738699500, 1.886499749204230, 2.654461760786369, 3.194409490485590, 3.560970834408763, 4.203733996541660, 4.675105016563897, 5.300928880340519, 5.644581816196963, 6.241238487611060, 6.787298888085921, 7.344157794824510, 7.704586626385910, 8.134562672600960, 8.461972959356237, 9.247067201001976, 9.521489216854097, 9.924155040237982, 10.30210543274910, 10.90800988819043, 11.34417234838694, 11.92325351651308, 12.19792376441452, 12.86460111677675

Graph of the $Z$-function along the critical line