Properties

Label 2-38088-1.1-c1-0-20
Degree $2$
Conductor $38088$
Sign $-1$
Analytic cond. $304.134$
Root an. cond. $17.4394$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·11-s − 2·13-s + 2·17-s + 4·19-s − 25-s − 6·29-s + 8·31-s − 6·37-s + 6·41-s − 4·43-s − 7·49-s − 2·53-s − 8·55-s − 4·59-s + 2·61-s + 4·65-s + 4·67-s − 8·71-s + 10·73-s + 8·79-s − 4·83-s − 4·85-s − 6·89-s − 8·95-s − 2·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.20·11-s − 0.554·13-s + 0.485·17-s + 0.917·19-s − 1/5·25-s − 1.11·29-s + 1.43·31-s − 0.986·37-s + 0.937·41-s − 0.609·43-s − 49-s − 0.274·53-s − 1.07·55-s − 0.520·59-s + 0.256·61-s + 0.496·65-s + 0.488·67-s − 0.949·71-s + 1.17·73-s + 0.900·79-s − 0.439·83-s − 0.433·85-s − 0.635·89-s − 0.820·95-s − 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38088 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38088\)    =    \(2^{3} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(304.134\)
Root analytic conductor: \(17.4394\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 38088,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.09057331342915, −14.62914657807155, −14.05768292978718, −13.72453912879758, −12.91908740709758, −12.31715446233378, −11.96758469690085, −11.50371131555606, −11.11771689829495, −10.31538347458514, −9.645580648027357, −9.432479272376017, −8.634972723171745, −8.080164510220657, −7.565960608643644, −7.085518347512728, −6.457815794338902, −5.842276700168263, −5.081161269800029, −4.554971623344801, −3.779282832081591, −3.472152063580733, −2.657092392379667, −1.697908415098429, −0.9808311582167849, 0, 0.9808311582167849, 1.697908415098429, 2.657092392379667, 3.472152063580733, 3.779282832081591, 4.554971623344801, 5.081161269800029, 5.842276700168263, 6.457815794338902, 7.085518347512728, 7.565960608643644, 8.080164510220657, 8.634972723171745, 9.432479272376017, 9.645580648027357, 10.31538347458514, 11.11771689829495, 11.50371131555606, 11.96758469690085, 12.31715446233378, 12.91908740709758, 13.72453912879758, 14.05768292978718, 14.62914657807155, 15.09057331342915

Graph of the $Z$-function along the critical line