Properties

Label 2-374400-1.1-c1-0-78
Degree $2$
Conductor $374400$
Sign $1$
Analytic cond. $2989.59$
Root an. cond. $54.6772$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 4·11-s + 13-s − 2·17-s − 4·19-s + 4·23-s + 6·31-s + 2·37-s + 6·41-s + 12·47-s − 3·49-s + 8·53-s − 12·59-s + 6·61-s + 12·71-s − 6·73-s − 8·77-s − 14·79-s − 4·83-s + 18·89-s + 2·91-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.755·7-s − 1.20·11-s + 0.277·13-s − 0.485·17-s − 0.917·19-s + 0.834·23-s + 1.07·31-s + 0.328·37-s + 0.937·41-s + 1.75·47-s − 3/7·49-s + 1.09·53-s − 1.56·59-s + 0.768·61-s + 1.42·71-s − 0.702·73-s − 0.911·77-s − 1.57·79-s − 0.439·83-s + 1.90·89-s + 0.209·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 374400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 374400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(374400\)    =    \(2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2989.59\)
Root analytic conductor: \(54.6772\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 374400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.711608325\)
\(L(\frac12)\) \(\approx\) \(2.711608325\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55782600802229, −12.01074954462399, −11.54547687603813, −10.94483788451254, −10.86424358626033, −10.28830592458485, −9.926896551265018, −9.184254100472052, −8.754523373136730, −8.490356983036422, −7.784846377284849, −7.637417637720451, −7.023297884849317, −6.413257204671098, −6.024080865208640, −5.405671365396262, −5.021122741322506, −4.412109174718858, −4.198506325389412, −3.377031877163829, −2.716142646172273, −2.391328045905099, −1.804104073416149, −1.009540295510378, −0.4733763145762357, 0.4733763145762357, 1.009540295510378, 1.804104073416149, 2.391328045905099, 2.716142646172273, 3.377031877163829, 4.198506325389412, 4.412109174718858, 5.021122741322506, 5.405671365396262, 6.024080865208640, 6.413257204671098, 7.023297884849317, 7.637417637720451, 7.784846377284849, 8.490356983036422, 8.754523373136730, 9.184254100472052, 9.926896551265018, 10.28830592458485, 10.86424358626033, 10.94483788451254, 11.54547687603813, 12.01074954462399, 12.55782600802229

Graph of the $Z$-function along the critical line