Properties

Label 2-37440-1.1-c1-0-38
Degree $2$
Conductor $37440$
Sign $1$
Analytic cond. $298.959$
Root an. cond. $17.2904$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s + 13-s + 2·17-s + 4·19-s + 8·23-s + 25-s + 2·29-s + 8·31-s + 4·35-s − 2·37-s + 6·41-s + 12·43-s + 9·49-s + 10·53-s + 10·61-s − 65-s − 4·67-s − 16·71-s − 6·73-s + 8·79-s + 4·83-s − 2·85-s + 14·89-s − 4·91-s − 4·95-s − 6·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s + 0.277·13-s + 0.485·17-s + 0.917·19-s + 1.66·23-s + 1/5·25-s + 0.371·29-s + 1.43·31-s + 0.676·35-s − 0.328·37-s + 0.937·41-s + 1.82·43-s + 9/7·49-s + 1.37·53-s + 1.28·61-s − 0.124·65-s − 0.488·67-s − 1.89·71-s − 0.702·73-s + 0.900·79-s + 0.439·83-s − 0.216·85-s + 1.48·89-s − 0.419·91-s − 0.410·95-s − 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37440\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(298.959\)
Root analytic conductor: \(17.2904\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 37440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.140448484\)
\(L(\frac12)\) \(\approx\) \(2.140448484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.93012778181735, −14.34773497979992, −13.72555115467002, −13.23021847845060, −12.84933552940351, −12.22880768956976, −11.83412301563147, −11.22915801113040, −10.51362086622541, −10.15340527666171, −9.525656183230270, −8.987696065383927, −8.632729738141823, −7.632163431220872, −7.367714479813899, −6.694099894394824, −6.168350575892231, −5.590378522573793, −4.886622838582645, −4.151309219019836, −3.510406589321264, −2.956557869482777, −2.511982340116743, −1.078906588894156, −0.6614765689140241, 0.6614765689140241, 1.078906588894156, 2.511982340116743, 2.956557869482777, 3.510406589321264, 4.151309219019836, 4.886622838582645, 5.590378522573793, 6.168350575892231, 6.694099894394824, 7.367714479813899, 7.632163431220872, 8.632729738141823, 8.987696065383927, 9.525656183230270, 10.15340527666171, 10.51362086622541, 11.22915801113040, 11.83412301563147, 12.22880768956976, 12.84933552940351, 13.23021847845060, 13.72555115467002, 14.34773497979992, 14.93012778181735

Graph of the $Z$-function along the critical line