Properties

Label 2-372645-1.1-c1-0-86
Degree $2$
Conductor $372645$
Sign $-1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 5-s + 3·11-s + 4·16-s + 3·17-s − 4·19-s − 2·20-s − 9·23-s + 25-s − 6·29-s + 2·31-s + 37-s − 3·41-s + 2·43-s − 6·44-s − 6·47-s + 9·53-s + 3·55-s − 12·59-s − 5·61-s − 8·64-s + 4·67-s − 6·68-s − 9·71-s + 14·73-s + 8·76-s − 7·79-s + ⋯
L(s)  = 1  − 4-s + 0.447·5-s + 0.904·11-s + 16-s + 0.727·17-s − 0.917·19-s − 0.447·20-s − 1.87·23-s + 1/5·25-s − 1.11·29-s + 0.359·31-s + 0.164·37-s − 0.468·41-s + 0.304·43-s − 0.904·44-s − 0.875·47-s + 1.23·53-s + 0.404·55-s − 1.56·59-s − 0.640·61-s − 64-s + 0.488·67-s − 0.727·68-s − 1.06·71-s + 1.63·73-s + 0.917·76-s − 0.787·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.68756688538012, −12.28317752764143, −11.95444583414218, −11.45916637866964, −10.76751549637130, −10.38949290512667, −9.901272215656874, −9.550047957820448, −9.197400647693693, −8.565098778141883, −8.346956843225222, −7.681267843831995, −7.384437389947636, −6.531133435811811, −6.137215883576181, −5.844545626727349, −5.238147766461721, −4.676343579287301, −4.235964565541810, −3.697005213163633, −3.419411352207446, −2.548355489584348, −1.870478669320691, −1.477218004289689, −0.6789478625024501, 0, 0.6789478625024501, 1.477218004289689, 1.870478669320691, 2.548355489584348, 3.419411352207446, 3.697005213163633, 4.235964565541810, 4.676343579287301, 5.238147766461721, 5.844545626727349, 6.137215883576181, 6.531133435811811, 7.384437389947636, 7.681267843831995, 8.346956843225222, 8.565098778141883, 9.197400647693693, 9.550047957820448, 9.901272215656874, 10.38949290512667, 10.76751549637130, 11.45916637866964, 11.95444583414218, 12.28317752764143, 12.68756688538012

Graph of the $Z$-function along the critical line