| L(s)  = 1  |       − 2·4-s   + 5-s             + 3·11-s           + 4·16-s   + 3·17-s     − 4·19-s   − 2·20-s       − 9·23-s     + 25-s         − 6·29-s     + 2·31-s             + 37-s         − 3·41-s     + 2·43-s   − 6·44-s       − 6·47-s             + 9·53-s     + 3·55-s         − 12·59-s     − 5·61-s       − 8·64-s       + 4·67-s   − 6·68-s       − 9·71-s     + 14·73-s       + 8·76-s       − 7·79-s  + ⋯ | 
 
| L(s)  = 1  |       − 4-s   + 0.447·5-s             + 0.904·11-s           + 16-s   + 0.727·17-s     − 0.917·19-s   − 0.447·20-s       − 1.87·23-s     + 1/5·25-s         − 1.11·29-s     + 0.359·31-s             + 0.164·37-s         − 0.468·41-s     + 0.304·43-s   − 0.904·44-s       − 0.875·47-s             + 1.23·53-s     + 0.404·55-s         − 1.56·59-s     − 0.640·61-s       − 64-s       + 0.488·67-s   − 0.727·68-s       − 1.06·71-s     + 1.63·73-s       + 0.917·76-s       − 0.787·79-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 |  \( 1 \)  |    | 
 | 5 |  \( 1 - T \)  |    | 
 | 7 |  \( 1 \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 2 |  \( 1 + p T^{2} \)  |  1.2.a  | 
 | 11 |  \( 1 - 3 T + p T^{2} \)  |  1.11.ad  | 
 | 17 |  \( 1 - 3 T + p T^{2} \)  |  1.17.ad  | 
 | 19 |  \( 1 + 4 T + p T^{2} \)  |  1.19.e  | 
 | 23 |  \( 1 + 9 T + p T^{2} \)  |  1.23.j  | 
 | 29 |  \( 1 + 6 T + p T^{2} \)  |  1.29.g  | 
 | 31 |  \( 1 - 2 T + p T^{2} \)  |  1.31.ac  | 
 | 37 |  \( 1 - T + p T^{2} \)  |  1.37.ab  | 
 | 41 |  \( 1 + 3 T + p T^{2} \)  |  1.41.d  | 
 | 43 |  \( 1 - 2 T + p T^{2} \)  |  1.43.ac  | 
 | 47 |  \( 1 + 6 T + p T^{2} \)  |  1.47.g  | 
 | 53 |  \( 1 - 9 T + p T^{2} \)  |  1.53.aj  | 
 | 59 |  \( 1 + 12 T + p T^{2} \)  |  1.59.m  | 
 | 61 |  \( 1 + 5 T + p T^{2} \)  |  1.61.f  | 
 | 67 |  \( 1 - 4 T + p T^{2} \)  |  1.67.ae  | 
 | 71 |  \( 1 + 9 T + p T^{2} \)  |  1.71.j  | 
 | 73 |  \( 1 - 14 T + p T^{2} \)  |  1.73.ao  | 
 | 79 |  \( 1 + 7 T + p T^{2} \)  |  1.79.h  | 
 | 83 |  \( 1 + p T^{2} \)  |  1.83.a  | 
 | 89 |  \( 1 - 15 T + p T^{2} \)  |  1.89.ap  | 
 | 97 |  \( 1 - 5 T + p T^{2} \)  |  1.97.af  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.68756688538012, −12.28317752764143, −11.95444583414218, −11.45916637866964, −10.76751549637130, −10.38949290512667, −9.901272215656874, −9.550047957820448, −9.197400647693693, −8.565098778141883, −8.346956843225222, −7.681267843831995, −7.384437389947636, −6.531133435811811, −6.137215883576181, −5.844545626727349, −5.238147766461721, −4.676343579287301, −4.235964565541810, −3.697005213163633, −3.419411352207446, −2.548355489584348, −1.870478669320691, −1.477218004289689, −0.6789478625024501, 0, 
0.6789478625024501, 1.477218004289689, 1.870478669320691, 2.548355489584348, 3.419411352207446, 3.697005213163633, 4.235964565541810, 4.676343579287301, 5.238147766461721, 5.844545626727349, 6.137215883576181, 6.531133435811811, 7.384437389947636, 7.681267843831995, 8.346956843225222, 8.565098778141883, 9.197400647693693, 9.550047957820448, 9.901272215656874, 10.38949290512667, 10.76751549637130, 11.45916637866964, 11.95444583414218, 12.28317752764143, 12.68756688538012