Properties

Label 2-371943-1.1-c1-0-0
Degree $2$
Conductor $371943$
Sign $1$
Analytic cond. $2969.97$
Root an. cond. $54.4975$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 7-s − 3·8-s − 11-s + 13-s − 14-s − 16-s − 22-s − 2·23-s − 5·25-s + 26-s + 28-s − 4·29-s − 2·31-s + 5·32-s − 11·37-s + 7·41-s − 7·43-s + 44-s − 2·46-s − 6·49-s − 5·50-s − 52-s − 12·53-s + 3·56-s − 4·58-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.377·7-s − 1.06·8-s − 0.301·11-s + 0.277·13-s − 0.267·14-s − 1/4·16-s − 0.213·22-s − 0.417·23-s − 25-s + 0.196·26-s + 0.188·28-s − 0.742·29-s − 0.359·31-s + 0.883·32-s − 1.80·37-s + 1.09·41-s − 1.06·43-s + 0.150·44-s − 0.294·46-s − 6/7·49-s − 0.707·50-s − 0.138·52-s − 1.64·53-s + 0.400·56-s − 0.525·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 371943 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 371943 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(371943\)    =    \(3^{2} \cdot 11 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2969.97\)
Root analytic conductor: \(54.4975\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 371943,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5504703831\)
\(L(\frac12)\) \(\approx\) \(0.5504703831\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.64493194276501, −12.18900492327394, −11.70187192336317, −11.19272687276533, −10.81003589746465, −10.10622145351324, −9.812741898702011, −9.290863284282093, −8.996758240843418, −8.303807769700592, −8.000117640741724, −7.483237285821213, −6.815700137519338, −6.287407598233400, −6.025654054284021, −5.342027465107377, −5.039475082293442, −4.564413414990168, −3.780203531518661, −3.558654121891706, −3.210560020593113, −2.263260620778706, −1.950314681480659, −1.037424134436991, −0.1833129290934301, 0.1833129290934301, 1.037424134436991, 1.950314681480659, 2.263260620778706, 3.210560020593113, 3.558654121891706, 3.780203531518661, 4.564413414990168, 5.039475082293442, 5.342027465107377, 6.025654054284021, 6.287407598233400, 6.815700137519338, 7.483237285821213, 8.000117640741724, 8.303807769700592, 8.996758240843418, 9.290863284282093, 9.812741898702011, 10.10622145351324, 10.81003589746465, 11.19272687276533, 11.70187192336317, 12.18900492327394, 12.64493194276501

Graph of the $Z$-function along the critical line