Properties

Label 2-366400-1.1-c1-0-47
Degree $2$
Conductor $366400$
Sign $-1$
Analytic cond. $2925.71$
Root an. cond. $54.0899$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s − 2·9-s + 3·11-s + 2·13-s + 3·17-s + 19-s − 2·21-s + 6·23-s − 5·27-s − 4·31-s + 3·33-s + 2·37-s + 2·39-s − 43-s + 6·47-s − 3·49-s + 3·51-s − 6·53-s + 57-s + 7·61-s + 4·63-s + 8·67-s + 6·69-s + 3·71-s − 8·73-s − 6·77-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s − 2/3·9-s + 0.904·11-s + 0.554·13-s + 0.727·17-s + 0.229·19-s − 0.436·21-s + 1.25·23-s − 0.962·27-s − 0.718·31-s + 0.522·33-s + 0.328·37-s + 0.320·39-s − 0.152·43-s + 0.875·47-s − 3/7·49-s + 0.420·51-s − 0.824·53-s + 0.132·57-s + 0.896·61-s + 0.503·63-s + 0.977·67-s + 0.722·69-s + 0.356·71-s − 0.936·73-s − 0.683·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 366400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(366400\)    =    \(2^{6} \cdot 5^{2} \cdot 229\)
Sign: $-1$
Analytic conductor: \(2925.71\)
Root analytic conductor: \(54.0899\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 366400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
229 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78586489161387, −12.35448059242613, −11.80018159199815, −11.29358796254803, −11.11080373404745, −10.43119817663013, −9.864215619173677, −9.523659983541577, −9.026375597794456, −8.769041608715593, −8.279522453517540, −7.672121742893757, −7.252928214927544, −6.762301116778766, −6.141089976592471, −5.948221466777158, −5.237181559215461, −4.819154981252492, −3.985398752717952, −3.545361619679373, −3.298060237695006, −2.690548834816754, −2.130941474591046, −1.334893981143443, −0.8638039732665690, 0, 0.8638039732665690, 1.334893981143443, 2.130941474591046, 2.690548834816754, 3.298060237695006, 3.545361619679373, 3.985398752717952, 4.819154981252492, 5.237181559215461, 5.948221466777158, 6.141089976592471, 6.762301116778766, 7.252928214927544, 7.672121742893757, 8.279522453517540, 8.769041608715593, 9.026375597794456, 9.523659983541577, 9.864215619173677, 10.43119817663013, 11.11080373404745, 11.29358796254803, 11.80018159199815, 12.35448059242613, 12.78586489161387

Graph of the $Z$-function along the critical line