Properties

Label 2-364815-1.1-c1-0-12
Degree $2$
Conductor $364815$
Sign $-1$
Analytic cond. $2913.06$
Root an. cond. $53.9727$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 5-s + 3·8-s + 10-s − 2·13-s − 16-s − 2·17-s − 4·19-s + 20-s + 25-s + 2·26-s + 6·29-s − 4·31-s − 5·32-s + 2·34-s + 6·37-s + 4·38-s − 3·40-s + 10·41-s − 12·43-s − 7·49-s − 50-s + 2·52-s − 6·53-s − 6·58-s + 10·61-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.06·8-s + 0.316·10-s − 0.554·13-s − 1/4·16-s − 0.485·17-s − 0.917·19-s + 0.223·20-s + 1/5·25-s + 0.392·26-s + 1.11·29-s − 0.718·31-s − 0.883·32-s + 0.342·34-s + 0.986·37-s + 0.648·38-s − 0.474·40-s + 1.56·41-s − 1.82·43-s − 49-s − 0.141·50-s + 0.277·52-s − 0.824·53-s − 0.787·58-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 364815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364815 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(364815\)    =    \(3^{2} \cdot 5 \cdot 11^{2} \cdot 67\)
Sign: $-1$
Analytic conductor: \(2913.06\)
Root analytic conductor: \(53.9727\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 364815,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
67 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.65026204030446, −12.53184005272181, −11.64910983327853, −11.27047362603373, −10.97642250780402, −10.33059425770532, −10.00227914212534, −9.517610746706932, −9.159740282862802, −8.508092132665494, −8.296678215221551, −7.855837517423836, −7.342358135252009, −6.807124888182586, −6.420266561554702, −5.783839432241840, −5.045734399096664, −4.772993829693532, −4.255651323767848, −3.817257069002448, −3.165734201614297, −2.479025208804856, −1.963114403618115, −1.255237822730660, −0.5794502746887954, 0, 0.5794502746887954, 1.255237822730660, 1.963114403618115, 2.479025208804856, 3.165734201614297, 3.817257069002448, 4.255651323767848, 4.772993829693532, 5.045734399096664, 5.783839432241840, 6.420266561554702, 6.807124888182586, 7.342358135252009, 7.855837517423836, 8.296678215221551, 8.508092132665494, 9.159740282862802, 9.517610746706932, 10.00227914212534, 10.33059425770532, 10.97642250780402, 11.27047362603373, 11.64910983327853, 12.53184005272181, 12.65026204030446

Graph of the $Z$-function along the critical line