Properties

Label 2-36414-1.1-c1-0-41
Degree $2$
Conductor $36414$
Sign $-1$
Analytic cond. $290.767$
Root an. cond. $17.0518$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s + 7-s − 8-s + 3·10-s + 11-s + 4·13-s − 14-s + 16-s − 3·20-s − 22-s − 8·23-s + 4·25-s − 4·26-s + 28-s + 29-s − 3·31-s − 32-s − 3·35-s + 4·37-s + 3·40-s + 4·41-s − 6·43-s + 44-s + 8·46-s + 49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.377·7-s − 0.353·8-s + 0.948·10-s + 0.301·11-s + 1.10·13-s − 0.267·14-s + 1/4·16-s − 0.670·20-s − 0.213·22-s − 1.66·23-s + 4/5·25-s − 0.784·26-s + 0.188·28-s + 0.185·29-s − 0.538·31-s − 0.176·32-s − 0.507·35-s + 0.657·37-s + 0.474·40-s + 0.624·41-s − 0.914·43-s + 0.150·44-s + 1.17·46-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36414 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36414 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36414\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(290.767\)
Root analytic conductor: \(17.0518\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 36414,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.43470460306852, −14.73889892626893, −14.16100133135370, −13.77020020774895, −12.74617124234418, −12.58769394443429, −11.68248018760262, −11.42230090877079, −11.18605603441582, −10.33430701162992, −9.934362747162149, −9.182789093156788, −8.489533488097927, −8.308318753327252, −7.674078496662032, −7.286728151029546, −6.441516045623599, −6.058700041637309, −5.229733816309030, −4.394260066709803, −3.833626646526868, −3.459458351986310, −2.459262560027879, −1.664099222779520, −0.8694062959733924, 0, 0.8694062959733924, 1.664099222779520, 2.459262560027879, 3.459458351986310, 3.833626646526868, 4.394260066709803, 5.229733816309030, 6.058700041637309, 6.441516045623599, 7.286728151029546, 7.674078496662032, 8.308318753327252, 8.489533488097927, 9.182789093156788, 9.934362747162149, 10.33430701162992, 11.18605603441582, 11.42230090877079, 11.68248018760262, 12.58769394443429, 12.74617124234418, 13.77020020774895, 14.16100133135370, 14.73889892626893, 15.43470460306852

Graph of the $Z$-function along the critical line