Properties

Label 2-355740-1.1-c1-0-44
Degree $2$
Conductor $355740$
Sign $-1$
Analytic cond. $2840.59$
Root an. cond. $53.2972$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 4·13-s − 15-s − 6·17-s + 2·19-s + 25-s − 27-s + 4·31-s − 10·37-s + 4·39-s + 4·43-s + 45-s − 12·47-s + 6·51-s + 6·53-s − 2·57-s − 12·59-s − 10·61-s − 4·65-s − 4·67-s + 8·73-s − 75-s + 10·79-s + 81-s − 6·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 1.10·13-s − 0.258·15-s − 1.45·17-s + 0.458·19-s + 1/5·25-s − 0.192·27-s + 0.718·31-s − 1.64·37-s + 0.640·39-s + 0.609·43-s + 0.149·45-s − 1.75·47-s + 0.840·51-s + 0.824·53-s − 0.264·57-s − 1.56·59-s − 1.28·61-s − 0.496·65-s − 0.488·67-s + 0.936·73-s − 0.115·75-s + 1.12·79-s + 1/9·81-s − 0.658·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 355740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 355740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(355740\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2840.59\)
Root analytic conductor: \(53.2972\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 355740,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 \)
good13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71027241385681, −12.20951632952412, −11.93059634097254, −11.45499301951277, −10.85789598383117, −10.53837001369442, −10.15525016178267, −9.508872894779845, −9.241250905830893, −8.812094712392685, −8.038289171511284, −7.780664824281610, −6.982378568604819, −6.808465801772468, −6.314704430565182, −5.767132613508282, −5.179888792797015, −4.830930273424642, −4.440765056306750, −3.781369699669351, −3.054922013968053, −2.616854864304177, −1.900892770289929, −1.556657396828192, −0.6026786818801371, 0, 0.6026786818801371, 1.556657396828192, 1.900892770289929, 2.616854864304177, 3.054922013968053, 3.781369699669351, 4.440765056306750, 4.830930273424642, 5.179888792797015, 5.767132613508282, 6.314704430565182, 6.808465801772468, 6.982378568604819, 7.780664824281610, 8.038289171511284, 8.812094712392685, 9.241250905830893, 9.508872894779845, 10.15525016178267, 10.53837001369442, 10.85789598383117, 11.45499301951277, 11.93059634097254, 12.20951632952412, 12.71027241385681

Graph of the $Z$-function along the critical line