Properties

Label 2-35550-1.1-c1-0-2
Degree $2$
Conductor $35550$
Sign $1$
Analytic cond. $283.868$
Root an. cond. $16.8483$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·7-s − 8-s + 2·11-s − 6·13-s − 4·14-s + 16-s − 8·19-s − 2·22-s + 6·26-s + 4·28-s − 2·29-s − 8·31-s − 32-s − 10·37-s + 8·38-s + 6·41-s − 4·43-s + 2·44-s + 6·47-s + 9·49-s − 6·52-s + 2·53-s − 4·56-s + 2·58-s − 12·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s + 0.603·11-s − 1.66·13-s − 1.06·14-s + 1/4·16-s − 1.83·19-s − 0.426·22-s + 1.17·26-s + 0.755·28-s − 0.371·29-s − 1.43·31-s − 0.176·32-s − 1.64·37-s + 1.29·38-s + 0.937·41-s − 0.609·43-s + 0.301·44-s + 0.875·47-s + 9/7·49-s − 0.832·52-s + 0.274·53-s − 0.534·56-s + 0.262·58-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(283.868\)
Root analytic conductor: \(16.8483\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.136397976\)
\(L(\frac12)\) \(\approx\) \(1.136397976\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
79 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 8 T + p T^{2} \) 1.73.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.85154157892717, −14.54226819760804, −14.19671425595091, −13.35204515257706, −12.57451577073024, −12.25198503665451, −11.72440606951207, −11.11686968044080, −10.65645488500863, −10.29466800308032, −9.450492017742760, −8.976517310171205, −8.581486386269321, −7.804202832176684, −7.537587723982720, −6.884097401715728, −6.309624705615293, −5.405222156511117, −5.004210906254391, −4.299360605541824, −3.718534919110848, −2.601464887590437, −1.979340119495618, −1.623501660585066, −0.4275439434428177, 0.4275439434428177, 1.623501660585066, 1.979340119495618, 2.601464887590437, 3.718534919110848, 4.299360605541824, 5.004210906254391, 5.405222156511117, 6.309624705615293, 6.884097401715728, 7.537587723982720, 7.804202832176684, 8.581486386269321, 8.976517310171205, 9.450492017742760, 10.29466800308032, 10.65645488500863, 11.11686968044080, 11.72440606951207, 12.25198503665451, 12.57451577073024, 13.35204515257706, 14.19671425595091, 14.54226819760804, 14.85154157892717

Graph of the $Z$-function along the critical line