Properties

Label 2-34760-1.1-c1-0-0
Degree $2$
Conductor $34760$
Sign $1$
Analytic cond. $277.559$
Root an. cond. $16.6601$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s − 2·7-s + 9-s − 11-s − 6·13-s + 2·15-s − 2·17-s − 8·19-s − 4·21-s + 25-s − 4·27-s + 2·29-s − 2·33-s − 2·35-s − 10·37-s − 12·39-s + 8·41-s + 8·43-s + 45-s − 12·47-s − 3·49-s − 4·51-s + 6·53-s − 55-s − 16·57-s − 8·59-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 1.66·13-s + 0.516·15-s − 0.485·17-s − 1.83·19-s − 0.872·21-s + 1/5·25-s − 0.769·27-s + 0.371·29-s − 0.348·33-s − 0.338·35-s − 1.64·37-s − 1.92·39-s + 1.24·41-s + 1.21·43-s + 0.149·45-s − 1.75·47-s − 3/7·49-s − 0.560·51-s + 0.824·53-s − 0.134·55-s − 2.11·57-s − 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34760\)    =    \(2^{3} \cdot 5 \cdot 11 \cdot 79\)
Sign: $1$
Analytic conductor: \(277.559\)
Root analytic conductor: \(16.6601\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 34760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.375799726\)
\(L(\frac12)\) \(\approx\) \(1.375799726\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
79 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.81486236141061, −14.52752086005140, −13.89105667302736, −13.51104191820619, −12.79938584070942, −12.56720523912687, −12.04904384211530, −11.03497440796824, −10.66985925383227, −9.918476354297460, −9.643142736263907, −8.990622801596417, −8.653962196867132, −7.923282680819101, −7.465406425172671, −6.733249528547607, −6.319521972014044, −5.562018057075762, −4.766712197951156, −4.303514401783848, −3.408910207550938, −2.883705101541185, −2.216142786910453, −1.924464636528842, −0.3680656267421439, 0.3680656267421439, 1.924464636528842, 2.216142786910453, 2.883705101541185, 3.408910207550938, 4.303514401783848, 4.766712197951156, 5.562018057075762, 6.319521972014044, 6.733249528547607, 7.465406425172671, 7.923282680819101, 8.653962196867132, 8.990622801596417, 9.643142736263907, 9.918476354297460, 10.66985925383227, 11.03497440796824, 12.04904384211530, 12.56720523912687, 12.79938584070942, 13.51104191820619, 13.89105667302736, 14.52752086005140, 14.81486236141061

Graph of the $Z$-function along the critical line