Properties

Label 2-346560-1.1-c1-0-149
Degree $2$
Conductor $346560$
Sign $-1$
Analytic cond. $2767.29$
Root an. cond. $52.6050$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s + 9-s − 4·11-s − 6·13-s − 15-s + 4·17-s + 2·21-s + 4·23-s + 25-s − 27-s + 6·29-s + 6·31-s + 4·33-s − 2·35-s + 10·37-s + 6·39-s − 4·41-s − 12·43-s + 45-s + 4·47-s − 3·49-s − 4·51-s − 10·53-s − 4·55-s + 10·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s − 1.20·11-s − 1.66·13-s − 0.258·15-s + 0.970·17-s + 0.436·21-s + 0.834·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 1.07·31-s + 0.696·33-s − 0.338·35-s + 1.64·37-s + 0.960·39-s − 0.624·41-s − 1.82·43-s + 0.149·45-s + 0.583·47-s − 3/7·49-s − 0.560·51-s − 1.37·53-s − 0.539·55-s + 1.30·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(346560\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2767.29\)
Root analytic conductor: \(52.6050\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 346560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
19 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.91583548418583, −12.29847054229544, −11.97284300110833, −11.47439312075936, −10.97633266742065, −10.23646422310585, −10.07553378411430, −9.837111145981220, −9.399902190068344, −8.582496815648084, −8.191658086649603, −7.640534877424014, −7.195675515079240, −6.766806980944660, −6.202858037715484, −5.848432830675622, −5.144342741143721, −4.850829571821297, −4.606624275520017, −3.592900259615766, −3.023790450210429, −2.685274379425632, −2.172976603395242, −1.287335396879461, −0.6524532793963245, 0, 0.6524532793963245, 1.287335396879461, 2.172976603395242, 2.685274379425632, 3.023790450210429, 3.592900259615766, 4.606624275520017, 4.850829571821297, 5.144342741143721, 5.848432830675622, 6.202858037715484, 6.766806980944660, 7.195675515079240, 7.640534877424014, 8.191658086649603, 8.582496815648084, 9.399902190068344, 9.837111145981220, 10.07553378411430, 10.23646422310585, 10.97633266742065, 11.47439312075936, 11.97284300110833, 12.29847054229544, 12.91583548418583

Graph of the $Z$-function along the critical line