Properties

Label 2-338800-1.1-c1-0-140
Degree $2$
Conductor $338800$
Sign $-1$
Analytic cond. $2705.33$
Root an. cond. $52.0128$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s − 4·13-s − 4·19-s + 2·21-s + 6·23-s + 4·27-s + 6·29-s + 4·31-s − 2·37-s + 8·39-s + 6·41-s + 4·43-s + 6·47-s + 49-s + 6·53-s + 8·57-s + 10·61-s − 63-s + 2·67-s − 12·69-s − 12·71-s + 8·73-s − 16·79-s − 11·81-s + 12·83-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s − 1.10·13-s − 0.917·19-s + 0.436·21-s + 1.25·23-s + 0.769·27-s + 1.11·29-s + 0.718·31-s − 0.328·37-s + 1.28·39-s + 0.937·41-s + 0.609·43-s + 0.875·47-s + 1/7·49-s + 0.824·53-s + 1.05·57-s + 1.28·61-s − 0.125·63-s + 0.244·67-s − 1.44·69-s − 1.42·71-s + 0.936·73-s − 1.80·79-s − 1.22·81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338800\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2705.33\)
Root analytic conductor: \(52.0128\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.82155946106456, −12.22266837354382, −12.00313759651193, −11.41884090469048, −11.02802362867919, −10.58174764206033, −10.12987660191659, −9.842308197578019, −9.141342213465615, −8.682057212023689, −8.348660350799473, −7.530342379234830, −7.121924908339090, −6.776661510418154, −6.226919591104289, −5.810759301605550, −5.341168965891515, −4.751746641846510, −4.498422178198947, −3.877889615849069, −3.045616798745966, −2.624125912413944, −2.149697425716917, −1.097815217899884, −0.7096046499702719, 0, 0.7096046499702719, 1.097815217899884, 2.149697425716917, 2.624125912413944, 3.045616798745966, 3.877889615849069, 4.498422178198947, 4.751746641846510, 5.341168965891515, 5.810759301605550, 6.226919591104289, 6.776661510418154, 7.121924908339090, 7.530342379234830, 8.348660350799473, 8.682057212023689, 9.141342213465615, 9.842308197578019, 10.12987660191659, 10.58174764206033, 11.02802362867919, 11.41884090469048, 12.00313759651193, 12.22266837354382, 12.82155946106456

Graph of the $Z$-function along the critical line