Properties

Label 2-336336-1.1-c1-0-231
Degree $2$
Conductor $336336$
Sign $1$
Analytic cond. $2685.65$
Root an. cond. $51.8233$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 11-s + 13-s − 15-s + 4·17-s − 2·19-s + 23-s − 4·25-s − 27-s − 9·29-s − 4·31-s + 33-s − 6·37-s − 39-s − 41-s − 11·43-s + 45-s − 4·51-s − 10·53-s − 55-s + 2·57-s − 3·59-s − 5·61-s + 65-s − 3·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 0.301·11-s + 0.277·13-s − 0.258·15-s + 0.970·17-s − 0.458·19-s + 0.208·23-s − 4/5·25-s − 0.192·27-s − 1.67·29-s − 0.718·31-s + 0.174·33-s − 0.986·37-s − 0.160·39-s − 0.156·41-s − 1.67·43-s + 0.149·45-s − 0.560·51-s − 1.37·53-s − 0.134·55-s + 0.264·57-s − 0.390·59-s − 0.640·61-s + 0.124·65-s − 0.366·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336336\)    =    \(2^{4} \cdot 3 \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(2685.65\)
Root analytic conductor: \(51.8233\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 336336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12476345879659, −12.58244479108629, −12.14918118169779, −11.52560701836223, −11.37921422463793, −10.68666244874148, −10.36433982192667, −9.912107654577803, −9.495755695651256, −8.956973184064785, −8.513617032429632, −7.890069448633677, −7.423725060322565, −7.119759241111855, −6.353745302607366, −6.029665515929747, −5.539038439542687, −5.200477421077042, −4.600469139762625, −4.025664745507924, −3.367298908674989, −3.105524037543840, −2.114289653406457, −1.675680878735527, −1.266942618146186, 0, 0, 1.266942618146186, 1.675680878735527, 2.114289653406457, 3.105524037543840, 3.367298908674989, 4.025664745507924, 4.600469139762625, 5.200477421077042, 5.539038439542687, 6.029665515929747, 6.353745302607366, 7.119759241111855, 7.423725060322565, 7.890069448633677, 8.513617032429632, 8.956973184064785, 9.495755695651256, 9.912107654577803, 10.36433982192667, 10.68666244874148, 11.37921422463793, 11.52560701836223, 12.14918118169779, 12.58244479108629, 13.12476345879659

Graph of the $Z$-function along the critical line