| L(s)  = 1  |     − 3-s         − 3·7-s     − 2·9-s     − 5·11-s     − 2·13-s         − 3·17-s     − 6·19-s     + 3·21-s     − 8·23-s         + 5·27-s     + 9·29-s     + 9·31-s     + 5·33-s         + 9·37-s     + 2·39-s     − 10·41-s     − 6·43-s         − 6·47-s     + 2·49-s     + 3·51-s     + 2·53-s         + 6·57-s     + 59-s     − 7·61-s     + 6·63-s         + 8·67-s     + 8·69-s  + ⋯ | 
 
| L(s)  = 1  |     − 0.577·3-s         − 1.13·7-s     − 2/3·9-s     − 1.50·11-s     − 0.554·13-s         − 0.727·17-s     − 1.37·19-s     + 0.654·21-s     − 1.66·23-s         + 0.962·27-s     + 1.67·29-s     + 1.61·31-s     + 0.870·33-s         + 1.47·37-s     + 0.320·39-s     − 1.56·41-s     − 0.914·43-s         − 0.875·47-s     + 2/7·49-s     + 0.420·51-s     + 0.274·53-s         + 0.794·57-s     + 0.130·59-s     − 0.896·61-s     + 0.755·63-s         + 0.977·67-s     + 0.963·69-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 33200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 5 |  \( 1 \)  |    | 
 | 83 |  \( 1 - T \)  |    | 
| good | 3 |  \( 1 + T + p T^{2} \)  |  1.3.b  | 
 | 7 |  \( 1 + 3 T + p T^{2} \)  |  1.7.d  | 
 | 11 |  \( 1 + 5 T + p T^{2} \)  |  1.11.f  | 
 | 13 |  \( 1 + 2 T + p T^{2} \)  |  1.13.c  | 
 | 17 |  \( 1 + 3 T + p T^{2} \)  |  1.17.d  | 
 | 19 |  \( 1 + 6 T + p T^{2} \)  |  1.19.g  | 
 | 23 |  \( 1 + 8 T + p T^{2} \)  |  1.23.i  | 
 | 29 |  \( 1 - 9 T + p T^{2} \)  |  1.29.aj  | 
 | 31 |  \( 1 - 9 T + p T^{2} \)  |  1.31.aj  | 
 | 37 |  \( 1 - 9 T + p T^{2} \)  |  1.37.aj  | 
 | 41 |  \( 1 + 10 T + p T^{2} \)  |  1.41.k  | 
 | 43 |  \( 1 + 6 T + p T^{2} \)  |  1.43.g  | 
 | 47 |  \( 1 + 6 T + p T^{2} \)  |  1.47.g  | 
 | 53 |  \( 1 - 2 T + p T^{2} \)  |  1.53.ac  | 
 | 59 |  \( 1 - T + p T^{2} \)  |  1.59.ab  | 
 | 61 |  \( 1 + 7 T + p T^{2} \)  |  1.61.h  | 
 | 67 |  \( 1 - 8 T + p T^{2} \)  |  1.67.ai  | 
 | 71 |  \( 1 - 12 T + p T^{2} \)  |  1.71.am  | 
 | 73 |  \( 1 - 10 T + p T^{2} \)  |  1.73.ak  | 
 | 79 |  \( 1 - 4 T + p T^{2} \)  |  1.79.ae  | 
 | 89 |  \( 1 - 10 T + p T^{2} \)  |  1.89.ak  | 
 | 97 |  \( 1 + 16 T + p T^{2} \)  |  1.97.q  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.24155284750718, −15.02199900927693, −14.00565086130504, −13.68170067614674, −13.16594445764796, −12.50939383493803, −12.24717198262233, −11.60314878767072, −10.99086478316834, −10.39335481373335, −10.00898671108007, −9.659645721281141, −8.606568747633775, −8.229314865039628, −7.877555626326836, −6.677774589998785, −6.484366921424457, −6.091582461547951, −5.165559003766585, −4.802533853131614, −4.075801669136709, −3.130026415527061, −2.607742140493390, −2.101144610819812, −0.5752929578775308, 0, 
0.5752929578775308, 2.101144610819812, 2.607742140493390, 3.130026415527061, 4.075801669136709, 4.802533853131614, 5.165559003766585, 6.091582461547951, 6.484366921424457, 6.677774589998785, 7.877555626326836, 8.229314865039628, 8.606568747633775, 9.659645721281141, 10.00898671108007, 10.39335481373335, 10.99086478316834, 11.60314878767072, 12.24717198262233, 12.50939383493803, 13.16594445764796, 13.68170067614674, 14.00565086130504, 15.02199900927693, 15.24155284750718