Properties

Label 2-33200-1.1-c1-0-15
Degree $2$
Conductor $33200$
Sign $-1$
Analytic cond. $265.103$
Root an. cond. $16.2819$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·7-s − 2·9-s − 5·11-s − 2·13-s − 3·17-s − 6·19-s + 3·21-s − 8·23-s + 5·27-s + 9·29-s + 9·31-s + 5·33-s + 9·37-s + 2·39-s − 10·41-s − 6·43-s − 6·47-s + 2·49-s + 3·51-s + 2·53-s + 6·57-s + 59-s − 7·61-s + 6·63-s + 8·67-s + 8·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.13·7-s − 2/3·9-s − 1.50·11-s − 0.554·13-s − 0.727·17-s − 1.37·19-s + 0.654·21-s − 1.66·23-s + 0.962·27-s + 1.67·29-s + 1.61·31-s + 0.870·33-s + 1.47·37-s + 0.320·39-s − 1.56·41-s − 0.914·43-s − 0.875·47-s + 2/7·49-s + 0.420·51-s + 0.274·53-s + 0.794·57-s + 0.130·59-s − 0.896·61-s + 0.755·63-s + 0.977·67-s + 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33200\)    =    \(2^{4} \cdot 5^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(265.103\)
Root analytic conductor: \(16.2819\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
83 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.24155284750718, −15.02199900927693, −14.00565086130504, −13.68170067614674, −13.16594445764796, −12.50939383493803, −12.24717198262233, −11.60314878767072, −10.99086478316834, −10.39335481373335, −10.00898671108007, −9.659645721281141, −8.606568747633775, −8.229314865039628, −7.877555626326836, −6.677774589998785, −6.484366921424457, −6.091582461547951, −5.165559003766585, −4.802533853131614, −4.075801669136709, −3.130026415527061, −2.607742140493390, −2.101144610819812, −0.5752929578775308, 0, 0.5752929578775308, 2.101144610819812, 2.607742140493390, 3.130026415527061, 4.075801669136709, 4.802533853131614, 5.165559003766585, 6.091582461547951, 6.484366921424457, 6.677774589998785, 7.877555626326836, 8.229314865039628, 8.606568747633775, 9.659645721281141, 10.00898671108007, 10.39335481373335, 10.99086478316834, 11.60314878767072, 12.24717198262233, 12.50939383493803, 13.16594445764796, 13.68170067614674, 14.00565086130504, 15.02199900927693, 15.24155284750718

Graph of the $Z$-function along the critical line