Properties

Label 2-3312-1.1-c1-0-44
Degree $2$
Conductor $3312$
Sign $-1$
Analytic cond. $26.4464$
Root an. cond. $5.14261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 4·11-s − 2·13-s + 2·17-s + 2·19-s + 23-s − 25-s + 4·29-s − 4·35-s + 2·37-s + 2·43-s − 12·47-s − 3·49-s − 2·53-s − 8·55-s − 12·59-s − 14·61-s − 4·65-s − 2·67-s + 6·73-s + 8·77-s − 6·79-s − 4·83-s + 4·85-s − 18·89-s + 4·91-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s − 1.20·11-s − 0.554·13-s + 0.485·17-s + 0.458·19-s + 0.208·23-s − 1/5·25-s + 0.742·29-s − 0.676·35-s + 0.328·37-s + 0.304·43-s − 1.75·47-s − 3/7·49-s − 0.274·53-s − 1.07·55-s − 1.56·59-s − 1.79·61-s − 0.496·65-s − 0.244·67-s + 0.702·73-s + 0.911·77-s − 0.675·79-s − 0.439·83-s + 0.433·85-s − 1.90·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3312\)    =    \(2^{4} \cdot 3^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(26.4464\)
Root analytic conductor: \(5.14261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.147333055433711887481828188549, −7.58527073186463995761840691517, −6.66319955417652553644737431184, −5.97675172072583571635092589554, −5.29178061599942647616704041474, −4.55265856611633239781554096866, −3.19849046847586695687233771210, −2.69168994626663399567774322805, −1.55196167858596033257134738316, 0, 1.55196167858596033257134738316, 2.69168994626663399567774322805, 3.19849046847586695687233771210, 4.55265856611633239781554096866, 5.29178061599942647616704041474, 5.97675172072583571635092589554, 6.66319955417652553644737431184, 7.58527073186463995761840691517, 8.147333055433711887481828188549

Graph of the $Z$-function along the critical line