Properties

Label 2-3300-1.1-c1-0-28
Degree $2$
Conductor $3300$
Sign $-1$
Analytic cond. $26.3506$
Root an. cond. $5.13328$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 11-s − 4·13-s − 8·19-s − 4·23-s + 27-s + 2·29-s + 4·31-s + 33-s − 8·37-s − 4·39-s − 2·41-s + 4·47-s − 7·49-s − 12·53-s − 8·57-s − 12·59-s + 2·61-s − 12·67-s − 4·69-s + 12·73-s + 12·79-s + 81-s + 8·83-s + 2·87-s + 6·89-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.301·11-s − 1.10·13-s − 1.83·19-s − 0.834·23-s + 0.192·27-s + 0.371·29-s + 0.718·31-s + 0.174·33-s − 1.31·37-s − 0.640·39-s − 0.312·41-s + 0.583·47-s − 49-s − 1.64·53-s − 1.05·57-s − 1.56·59-s + 0.256·61-s − 1.46·67-s − 0.481·69-s + 1.40·73-s + 1.35·79-s + 1/9·81-s + 0.878·83-s + 0.214·87-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3300\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(26.3506\)
Root analytic conductor: \(5.13328\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3300,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.212252740681163083998696209774, −7.70142060108053211805964222156, −6.69590875784698134371445393548, −6.24067700591786084059293884607, −4.99233977340108707820670322738, −4.39774275121613848757969205639, −3.47991502532193488834025010823, −2.48980545019387184950215452816, −1.71378477981861071069940594747, 0, 1.71378477981861071069940594747, 2.48980545019387184950215452816, 3.47991502532193488834025010823, 4.39774275121613848757969205639, 4.99233977340108707820670322738, 6.24067700591786084059293884607, 6.69590875784698134371445393548, 7.70142060108053211805964222156, 8.212252740681163083998696209774

Graph of the $Z$-function along the critical line