Properties

Label 2-3300-1.1-c1-0-25
Degree $2$
Conductor $3300$
Sign $-1$
Analytic cond. $26.3506$
Root an. cond. $5.13328$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s − 11-s − 6·13-s + 4·17-s − 2·19-s − 2·21-s + 8·23-s + 27-s − 33-s + 6·37-s − 6·39-s − 10·43-s − 3·49-s + 4·51-s − 14·53-s − 2·57-s − 12·59-s − 14·61-s − 2·63-s − 4·67-s + 8·69-s − 6·73-s + 2·77-s + 2·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 1.66·13-s + 0.970·17-s − 0.458·19-s − 0.436·21-s + 1.66·23-s + 0.192·27-s − 0.174·33-s + 0.986·37-s − 0.960·39-s − 1.52·43-s − 3/7·49-s + 0.560·51-s − 1.92·53-s − 0.264·57-s − 1.56·59-s − 1.79·61-s − 0.251·63-s − 0.488·67-s + 0.963·69-s − 0.702·73-s + 0.227·77-s + 0.225·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3300\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(26.3506\)
Root analytic conductor: \(5.13328\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3300,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.174461045271428155286511351853, −7.53803840711764935566844456490, −6.92221850855986788238846208999, −6.08197105100066686265971381936, −5.05120723299971057048476955300, −4.47199005078239721584177735997, −3.08608524332757317521539271782, −2.91838551206243985528277189809, −1.57326728327252056716049122705, 0, 1.57326728327252056716049122705, 2.91838551206243985528277189809, 3.08608524332757317521539271782, 4.47199005078239721584177735997, 5.05120723299971057048476955300, 6.08197105100066686265971381936, 6.92221850855986788238846208999, 7.53803840711764935566844456490, 8.174461045271428155286511351853

Graph of the $Z$-function along the critical line