Properties

Label 2-32490-1.1-c1-0-17
Degree $2$
Conductor $32490$
Sign $1$
Analytic cond. $259.433$
Root an. cond. $16.1069$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 2·7-s − 8-s − 10-s + 6·11-s − 2·14-s + 16-s − 2·17-s + 20-s − 6·22-s − 4·23-s + 25-s + 2·28-s − 8·29-s + 8·31-s − 32-s + 2·34-s + 2·35-s + 4·37-s − 40-s − 4·41-s − 6·43-s + 6·44-s + 4·46-s + 12·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s − 0.353·8-s − 0.316·10-s + 1.80·11-s − 0.534·14-s + 1/4·16-s − 0.485·17-s + 0.223·20-s − 1.27·22-s − 0.834·23-s + 1/5·25-s + 0.377·28-s − 1.48·29-s + 1.43·31-s − 0.176·32-s + 0.342·34-s + 0.338·35-s + 0.657·37-s − 0.158·40-s − 0.624·41-s − 0.914·43-s + 0.904·44-s + 0.589·46-s + 1.75·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32490\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(259.433\)
Root analytic conductor: \(16.1069\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32490,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.317110595\)
\(L(\frac12)\) \(\approx\) \(2.317110595\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
19 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.12090213309211, −14.54795722724331, −13.96145140476509, −13.71076899527555, −12.84072656954699, −12.24696126144914, −11.63136350069757, −11.40794543080539, −10.82786519370841, −9.942195427221269, −9.807648899190607, −8.977573927404323, −8.714802853858999, −8.070213452298670, −7.423658995518015, −6.796194187028028, −6.309220029541605, −5.767296689237919, −4.992731894282618, −4.185380391717004, −3.782433530019151, −2.759258870181791, −1.944916743445002, −1.503916226413878, −0.6707310597711780, 0.6707310597711780, 1.503916226413878, 1.944916743445002, 2.759258870181791, 3.782433530019151, 4.185380391717004, 4.992731894282618, 5.767296689237919, 6.309220029541605, 6.796194187028028, 7.423658995518015, 8.070213452298670, 8.714802853858999, 8.977573927404323, 9.807648899190607, 9.942195427221269, 10.82786519370841, 11.40794543080539, 11.63136350069757, 12.24696126144914, 12.84072656954699, 13.71076899527555, 13.96145140476509, 14.54795722724331, 15.12090213309211

Graph of the $Z$-function along the critical line