Properties

Label 2-32448-1.1-c1-0-36
Degree $2$
Conductor $32448$
Sign $1$
Analytic cond. $259.098$
Root an. cond. $16.0965$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s − 2·7-s + 9-s − 2·11-s − 4·15-s + 6·17-s + 2·19-s + 2·21-s − 8·23-s + 11·25-s − 27-s − 6·29-s + 10·31-s + 2·33-s − 8·35-s + 4·37-s − 4·43-s + 4·45-s − 2·47-s − 3·49-s − 6·51-s + 10·53-s − 8·55-s − 2·57-s + 14·59-s + 2·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s − 0.755·7-s + 1/3·9-s − 0.603·11-s − 1.03·15-s + 1.45·17-s + 0.458·19-s + 0.436·21-s − 1.66·23-s + 11/5·25-s − 0.192·27-s − 1.11·29-s + 1.79·31-s + 0.348·33-s − 1.35·35-s + 0.657·37-s − 0.609·43-s + 0.596·45-s − 0.291·47-s − 3/7·49-s − 0.840·51-s + 1.37·53-s − 1.07·55-s − 0.264·57-s + 1.82·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32448\)    =    \(2^{6} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(259.098\)
Root analytic conductor: \(16.0965\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32448,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.467429780\)
\(L(\frac12)\) \(\approx\) \(2.467429780\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.85780159842082, −14.50967994761857, −13.82667415918889, −13.39918468636846, −13.08578991420629, −12.45263191665843, −11.91118964935638, −11.40264130940519, −10.44287397104153, −10.12351770254739, −9.817840722718835, −9.490243743266433, −8.545651463078140, −7.998693972592432, −7.218673713625652, −6.643743123984608, −5.930087050128397, −5.766311393296891, −5.257080845685625, −4.461836076398720, −3.567296192165818, −2.847111868805994, −2.210541866911405, −1.454273137193293, −0.6280561156806411, 0.6280561156806411, 1.454273137193293, 2.210541866911405, 2.847111868805994, 3.567296192165818, 4.461836076398720, 5.257080845685625, 5.766311393296891, 5.930087050128397, 6.643743123984608, 7.218673713625652, 7.998693972592432, 8.545651463078140, 9.490243743266433, 9.817840722718835, 10.12351770254739, 10.44287397104153, 11.40264130940519, 11.91118964935638, 12.45263191665843, 13.08578991420629, 13.39918468636846, 13.82667415918889, 14.50967994761857, 14.85780159842082

Graph of the $Z$-function along the critical line