Properties

Label 2-31920-1.1-c1-0-26
Degree $2$
Conductor $31920$
Sign $-1$
Analytic cond. $254.882$
Root an. cond. $15.9650$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s − 4·11-s − 2·13-s + 15-s − 2·17-s − 19-s − 21-s + 8·23-s + 25-s − 27-s + 6·29-s + 4·33-s − 35-s − 10·37-s + 2·39-s − 2·41-s + 8·43-s − 45-s + 49-s + 2·51-s + 2·53-s + 4·55-s + 57-s − 2·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 1.20·11-s − 0.554·13-s + 0.258·15-s − 0.485·17-s − 0.229·19-s − 0.218·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 0.696·33-s − 0.169·35-s − 1.64·37-s + 0.320·39-s − 0.312·41-s + 1.21·43-s − 0.149·45-s + 1/7·49-s + 0.280·51-s + 0.274·53-s + 0.539·55-s + 0.132·57-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31920\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(254.882\)
Root analytic conductor: \(15.9650\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 31920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
19 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.43779338015317, −14.94871283549706, −14.27001859960360, −13.73036154674520, −13.05066344434713, −12.70144713561435, −12.12278735642156, −11.62953298339934, −10.96627919627667, −10.62880724215735, −10.19411764630032, −9.423269074325683, −8.683375647221192, −8.369783626166977, −7.508835869537258, −7.173888917466723, −6.629731937596188, −5.748681183441785, −5.223857051166670, −4.711078980832804, −4.248801903740052, −3.190865417799002, −2.698432872965347, −1.827767608736262, −0.8478002969863034, 0, 0.8478002969863034, 1.827767608736262, 2.698432872965347, 3.190865417799002, 4.248801903740052, 4.711078980832804, 5.223857051166670, 5.748681183441785, 6.629731937596188, 7.173888917466723, 7.508835869537258, 8.369783626166977, 8.683375647221192, 9.423269074325683, 10.19411764630032, 10.62880724215735, 10.96627919627667, 11.62953298339934, 12.12278735642156, 12.70144713561435, 13.05066344434713, 13.73036154674520, 14.27001859960360, 14.94871283549706, 15.43779338015317

Graph of the $Z$-function along the critical line