Properties

Label 2-31850-1.1-c1-0-49
Degree $2$
Conductor $31850$
Sign $-1$
Analytic cond. $254.323$
Root an. cond. $15.9475$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 3·9-s + 6·11-s + 13-s + 16-s + 17-s + 3·18-s − 6·22-s − 3·23-s − 26-s − 7·31-s − 32-s − 34-s − 3·36-s + 2·37-s + 5·41-s − 6·43-s + 6·44-s + 3·46-s − 47-s + 52-s + 8·59-s − 6·61-s + 7·62-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 9-s + 1.80·11-s + 0.277·13-s + 1/4·16-s + 0.242·17-s + 0.707·18-s − 1.27·22-s − 0.625·23-s − 0.196·26-s − 1.25·31-s − 0.176·32-s − 0.171·34-s − 1/2·36-s + 0.328·37-s + 0.780·41-s − 0.914·43-s + 0.904·44-s + 0.442·46-s − 0.145·47-s + 0.138·52-s + 1.04·59-s − 0.768·61-s + 0.889·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31850\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(254.323\)
Root analytic conductor: \(15.9475\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 31850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.33109954646609, −14.64416089146900, −14.42556506164617, −13.95896278929599, −13.20281102818848, −12.53320491411900, −11.96000223622381, −11.51256387731598, −11.19104038017159, −10.52331010554650, −9.797007398178876, −9.378355083289823, −8.791510568763517, −8.494901191612089, −7.745840801259970, −7.155562781317419, −6.502645524992681, −6.028031531076711, −5.529421773794436, −4.601978940599400, −3.784154974709013, −3.394513746025475, −2.473533264345100, −1.711858627704317, −1.014139113920021, 0, 1.014139113920021, 1.711858627704317, 2.473533264345100, 3.394513746025475, 3.784154974709013, 4.601978940599400, 5.529421773794436, 6.028031531076711, 6.502645524992681, 7.155562781317419, 7.745840801259970, 8.494901191612089, 8.791510568763517, 9.378355083289823, 9.797007398178876, 10.52331010554650, 11.19104038017159, 11.51256387731598, 11.96000223622381, 12.53320491411900, 13.20281102818848, 13.95896278929599, 14.42556506164617, 14.64416089146900, 15.33109954646609

Graph of the $Z$-function along the critical line