Properties

Label 2-312-1.1-c1-0-4
Degree $2$
Conductor $312$
Sign $-1$
Analytic cond. $2.49133$
Root an. cond. $1.57839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s − 2·11-s − 13-s − 6·17-s − 4·19-s + 4·21-s + 4·23-s − 5·25-s − 27-s + 10·29-s − 8·31-s + 2·33-s − 2·37-s + 39-s − 4·43-s + 2·47-s + 9·49-s + 6·51-s − 2·53-s + 4·57-s + 10·59-s + 10·61-s − 4·63-s + 8·67-s − 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s − 0.603·11-s − 0.277·13-s − 1.45·17-s − 0.917·19-s + 0.872·21-s + 0.834·23-s − 25-s − 0.192·27-s + 1.85·29-s − 1.43·31-s + 0.348·33-s − 0.328·37-s + 0.160·39-s − 0.609·43-s + 0.291·47-s + 9/7·49-s + 0.840·51-s − 0.274·53-s + 0.529·57-s + 1.30·59-s + 1.28·61-s − 0.503·63-s + 0.977·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2.49133\)
Root analytic conductor: \(1.57839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11290586484749740754767267156, −10.32415831794851411382718499403, −9.482000907962227706474121895756, −8.460024182370040287671287102115, −6.97842775016457161547383853129, −6.43898703960602353565153271672, −5.24673574244182801120877493365, −3.96331013715912131044174768333, −2.52521406720822043214156379075, 0, 2.52521406720822043214156379075, 3.96331013715912131044174768333, 5.24673574244182801120877493365, 6.43898703960602353565153271672, 6.97842775016457161547383853129, 8.460024182370040287671287102115, 9.482000907962227706474121895756, 10.32415831794851411382718499403, 11.11290586484749740754767267156

Graph of the $Z$-function along the critical line