Properties

Label 2-30752-1.1-c1-0-1
Degree $2$
Conductor $30752$
Sign $-1$
Analytic cond. $245.555$
Root an. cond. $15.6702$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·9-s − 6·13-s − 2·17-s − 25-s + 10·29-s + 2·37-s + 10·41-s + 6·45-s − 7·49-s − 14·53-s + 10·61-s + 12·65-s + 6·73-s + 9·81-s + 4·85-s − 10·89-s + 18·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 18·117-s + ⋯
L(s)  = 1  − 0.894·5-s − 9-s − 1.66·13-s − 0.485·17-s − 1/5·25-s + 1.85·29-s + 0.328·37-s + 1.56·41-s + 0.894·45-s − 49-s − 1.92·53-s + 1.28·61-s + 1.48·65-s + 0.702·73-s + 81-s + 0.433·85-s − 1.05·89-s + 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 1.66·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30752\)    =    \(2^{5} \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(245.555\)
Root analytic conductor: \(15.6702\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 30752,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
31 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.44607872858117, −14.72149095760934, −14.33334928314550, −14.07494918929257, −13.13258322266304, −12.65910159079357, −12.01406977814206, −11.80776480537937, −11.12195926973933, −10.73265461533527, −9.865202476511329, −9.519361968419298, −8.815715444598358, −8.084090659455587, −7.924222595872994, −7.170846164722282, −6.574674592282918, −5.973341500947829, −5.147114745216748, −4.669619426095954, −4.125194444144228, −3.195719706008078, −2.719870593358961, −2.048939107892697, −0.7509516470224755, 0, 0.7509516470224755, 2.048939107892697, 2.719870593358961, 3.195719706008078, 4.125194444144228, 4.669619426095954, 5.147114745216748, 5.973341500947829, 6.574674592282918, 7.170846164722282, 7.924222595872994, 8.084090659455587, 8.815715444598358, 9.519361968419298, 9.865202476511329, 10.73265461533527, 11.12195926973933, 11.80776480537937, 12.01406977814206, 12.65910159079357, 13.13258322266304, 14.07494918929257, 14.33334928314550, 14.72149095760934, 15.44607872858117

Graph of the $Z$-function along the critical line