Properties

Label 2-3075-1.1-c1-0-96
Degree $2$
Conductor $3075$
Sign $-1$
Analytic cond. $24.5539$
Root an. cond. $4.95519$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 7-s + 9-s − 2·12-s − 13-s + 4·16-s − 7·19-s − 21-s + 6·23-s + 27-s + 2·28-s + 6·29-s + 5·31-s − 2·36-s + 2·37-s − 39-s − 41-s − 7·43-s − 12·47-s + 4·48-s − 6·49-s + 2·52-s − 6·53-s − 7·57-s − 12·59-s − 13·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.377·7-s + 1/3·9-s − 0.577·12-s − 0.277·13-s + 16-s − 1.60·19-s − 0.218·21-s + 1.25·23-s + 0.192·27-s + 0.377·28-s + 1.11·29-s + 0.898·31-s − 1/3·36-s + 0.328·37-s − 0.160·39-s − 0.156·41-s − 1.06·43-s − 1.75·47-s + 0.577·48-s − 6/7·49-s + 0.277·52-s − 0.824·53-s − 0.927·57-s − 1.56·59-s − 1.66·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3075 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3075\)    =    \(3 \cdot 5^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(24.5539\)
Root analytic conductor: \(4.95519\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3075,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
41 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.305945606391839205282292090836, −7.932329180005966885575360519907, −6.72329343913589780866860376462, −6.21989382792203032036374556840, −4.84399229198312468911478750066, −4.61230029625516083058344364246, −3.47311181004335955470223955657, −2.79504250888332980219546612739, −1.44680368185532689738807678075, 0, 1.44680368185532689738807678075, 2.79504250888332980219546612739, 3.47311181004335955470223955657, 4.61230029625516083058344364246, 4.84399229198312468911478750066, 6.21989382792203032036374556840, 6.72329343913589780866860376462, 7.932329180005966885575360519907, 8.305945606391839205282292090836

Graph of the $Z$-function along the critical line