Properties

Label 2-552e2-1.1-c1-0-103
Degree $2$
Conductor $304704$
Sign $-1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 4·11-s + 3·13-s + 6·17-s + 2·19-s − 4·25-s + 5·29-s − 2·31-s + 2·35-s − 10·37-s − 3·41-s − 6·43-s − 3·49-s + 3·53-s − 4·55-s − 6·59-s − 3·61-s − 3·65-s − 4·67-s − 6·71-s − 73-s − 8·77-s − 8·79-s − 6·83-s − 6·85-s + 3·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 1.20·11-s + 0.832·13-s + 1.45·17-s + 0.458·19-s − 4/5·25-s + 0.928·29-s − 0.359·31-s + 0.338·35-s − 1.64·37-s − 0.468·41-s − 0.914·43-s − 3/7·49-s + 0.412·53-s − 0.539·55-s − 0.781·59-s − 0.384·61-s − 0.372·65-s − 0.488·67-s − 0.712·71-s − 0.117·73-s − 0.911·77-s − 0.900·79-s − 0.658·83-s − 0.650·85-s + 0.317·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81340897703529, −12.33372558986203, −11.96643207488595, −11.65566155015004, −11.22433384818801, −10.48502486260037, −10.12030725203259, −9.787700965358832, −9.189152058152148, −8.759080344419012, −8.359979992711203, −7.788475759914035, −7.268203836991755, −6.855380265899793, −6.312145761925753, −5.925747105679359, −5.425317387906230, −4.787497630375793, −4.161676714657773, −3.655206719234142, −3.261487751885488, −2.989986902760363, −1.810411810638836, −1.474581154070883, −0.7867787905133723, 0, 0.7867787905133723, 1.474581154070883, 1.810411810638836, 2.989986902760363, 3.261487751885488, 3.655206719234142, 4.161676714657773, 4.787497630375793, 5.425317387906230, 5.925747105679359, 6.312145761925753, 6.855380265899793, 7.268203836991755, 7.788475759914035, 8.359979992711203, 8.759080344419012, 9.189152058152148, 9.787700965358832, 10.12030725203259, 10.48502486260037, 11.22433384818801, 11.65566155015004, 11.96643207488595, 12.33372558986203, 12.81340897703529

Graph of the $Z$-function along the critical line