Properties

Label 2-30420-1.1-c1-0-16
Degree $2$
Conductor $30420$
Sign $-1$
Analytic cond. $242.904$
Root an. cond. $15.5854$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s − 6·11-s + 2·17-s + 2·19-s + 4·23-s + 25-s − 2·29-s + 2·31-s − 2·35-s − 2·37-s − 6·41-s + 6·47-s − 3·49-s + 2·53-s + 6·55-s − 6·59-s + 14·61-s − 2·67-s − 10·71-s + 6·73-s − 12·77-s + 4·79-s + 2·83-s − 2·85-s − 14·89-s − 2·95-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.755·7-s − 1.80·11-s + 0.485·17-s + 0.458·19-s + 0.834·23-s + 1/5·25-s − 0.371·29-s + 0.359·31-s − 0.338·35-s − 0.328·37-s − 0.937·41-s + 0.875·47-s − 3/7·49-s + 0.274·53-s + 0.809·55-s − 0.781·59-s + 1.79·61-s − 0.244·67-s − 1.18·71-s + 0.702·73-s − 1.36·77-s + 0.450·79-s + 0.219·83-s − 0.216·85-s − 1.48·89-s − 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30420\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(242.904\)
Root analytic conductor: \(15.5854\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 30420,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.42725453591916, −14.94693521373504, −14.38076937036295, −13.73599966046756, −13.29815327816420, −12.75152344212221, −12.18258429763588, −11.65466494027542, −11.01682654716032, −10.69542041700231, −10.07718092653546, −9.529058401121502, −8.686510941775531, −8.225856070710477, −7.789851754059183, −7.261430340979986, −6.704296294520679, −5.614376627525746, −5.343871793713748, −4.784101843191849, −4.083258848925221, −3.204280796615018, −2.732354447857418, −1.886083402214610, −0.9825207057741074, 0, 0.9825207057741074, 1.886083402214610, 2.732354447857418, 3.204280796615018, 4.083258848925221, 4.784101843191849, 5.343871793713748, 5.614376627525746, 6.704296294520679, 7.261430340979986, 7.789851754059183, 8.225856070710477, 8.686510941775531, 9.529058401121502, 10.07718092653546, 10.69542041700231, 11.01682654716032, 11.65466494027542, 12.18258429763588, 12.75152344212221, 13.29815327816420, 13.73599966046756, 14.38076937036295, 14.94693521373504, 15.42725453591916

Graph of the $Z$-function along the critical line