Properties

Label 2-302400-1.1-c1-0-167
Degree $2$
Conductor $302400$
Sign $1$
Analytic cond. $2414.67$
Root an. cond. $49.1393$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·11-s + 2·13-s + 6·17-s − 5·19-s + 9·23-s − 6·29-s − 31-s + 11·37-s + 3·41-s − 4·43-s + 12·47-s + 49-s − 8·61-s − 10·67-s + 3·71-s − 8·73-s + 3·77-s − 4·79-s + 6·83-s + 3·89-s − 2·91-s − 8·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.377·7-s − 0.904·11-s + 0.554·13-s + 1.45·17-s − 1.14·19-s + 1.87·23-s − 1.11·29-s − 0.179·31-s + 1.80·37-s + 0.468·41-s − 0.609·43-s + 1.75·47-s + 1/7·49-s − 1.02·61-s − 1.22·67-s + 0.356·71-s − 0.936·73-s + 0.341·77-s − 0.450·79-s + 0.658·83-s + 0.317·89-s − 0.209·91-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 302400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 302400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(302400\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(2414.67\)
Root analytic conductor: \(49.1393\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 302400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.633354481\)
\(L(\frac12)\) \(\approx\) \(2.633354481\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69399907571201, −12.41505200404068, −11.74195715797750, −11.14584433658919, −10.93731876444265, −10.34657634448220, −10.09056053137855, −9.325671858902732, −9.088590784708814, −8.582983388727750, −7.959554216981782, −7.535514168410076, −7.241748217039765, −6.554099009279348, −5.929945169682986, −5.730316606299912, −5.155771880979353, −4.482510550071395, −4.130979997845448, −3.215877047618551, −3.142284238357699, −2.415189482500147, −1.772605279112797, −0.9952086200156859, −0.4988406075317932, 0.4988406075317932, 0.9952086200156859, 1.772605279112797, 2.415189482500147, 3.142284238357699, 3.215877047618551, 4.130979997845448, 4.482510550071395, 5.155771880979353, 5.730316606299912, 5.929945169682986, 6.554099009279348, 7.241748217039765, 7.535514168410076, 7.959554216981782, 8.582983388727750, 9.088590784708814, 9.325671858902732, 10.09056053137855, 10.34657634448220, 10.93731876444265, 11.14584433658919, 11.74195715797750, 12.41505200404068, 12.69399907571201

Graph of the $Z$-function along the critical line