Properties

Label 2-301716-1.1-c1-0-5
Degree $2$
Conductor $301716$
Sign $-1$
Analytic cond. $2409.21$
Root an. cond. $49.0837$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s − 6·11-s + 2·13-s − 6·19-s + 4·23-s − 25-s − 29-s + 6·31-s + 8·35-s − 2·37-s + 2·41-s + 10·43-s + 2·47-s + 9·49-s − 10·53-s + 12·55-s − 10·61-s − 4·65-s − 12·67-s + 8·71-s − 10·73-s + 24·77-s + 6·79-s − 16·83-s − 2·89-s − 8·91-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s − 1.80·11-s + 0.554·13-s − 1.37·19-s + 0.834·23-s − 1/5·25-s − 0.185·29-s + 1.07·31-s + 1.35·35-s − 0.328·37-s + 0.312·41-s + 1.52·43-s + 0.291·47-s + 9/7·49-s − 1.37·53-s + 1.61·55-s − 1.28·61-s − 0.496·65-s − 1.46·67-s + 0.949·71-s − 1.17·73-s + 2.73·77-s + 0.675·79-s − 1.75·83-s − 0.211·89-s − 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 301716 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 301716 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(301716\)    =    \(2^{2} \cdot 3^{2} \cdot 17^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(2409.21\)
Root analytic conductor: \(49.0837\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 301716,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 \)
29 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89118537323507, −12.48139332034799, −12.22607845319818, −11.48380025641190, −10.89015326947889, −10.74132497316272, −10.23868968323267, −9.754415025204146, −9.216196332876799, −8.717632358503122, −8.280903563541261, −7.773547640857124, −7.382357978605093, −6.902590100980185, −6.197622376225762, −6.029789212516265, −5.412198942488854, −4.637017094076386, −4.355844534707674, −3.702819334680810, −3.150094122431560, −2.768789931857936, −2.312381346635989, −1.341839392091711, −0.4421936010160557, 0, 0.4421936010160557, 1.341839392091711, 2.312381346635989, 2.768789931857936, 3.150094122431560, 3.702819334680810, 4.355844534707674, 4.637017094076386, 5.412198942488854, 6.029789212516265, 6.197622376225762, 6.902590100980185, 7.382357978605093, 7.773547640857124, 8.280903563541261, 8.717632358503122, 9.216196332876799, 9.754415025204146, 10.23868968323267, 10.74132497316272, 10.89015326947889, 11.48380025641190, 12.22607845319818, 12.48139332034799, 12.89118537323507

Graph of the $Z$-function along the critical line