Properties

Label 2-3015-1.1-c1-0-20
Degree $2$
Conductor $3015$
Sign $1$
Analytic cond. $24.0748$
Root an. cond. $4.90661$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 5-s + 3·8-s + 10-s + 4·13-s − 16-s + 4·17-s + 4·19-s + 20-s − 8·23-s + 25-s − 4·26-s + 2·29-s + 2·31-s − 5·32-s − 4·34-s + 6·37-s − 4·38-s − 3·40-s − 6·41-s + 8·46-s − 12·47-s − 7·49-s − 50-s − 4·52-s + 2·53-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.06·8-s + 0.316·10-s + 1.10·13-s − 1/4·16-s + 0.970·17-s + 0.917·19-s + 0.223·20-s − 1.66·23-s + 1/5·25-s − 0.784·26-s + 0.371·29-s + 0.359·31-s − 0.883·32-s − 0.685·34-s + 0.986·37-s − 0.648·38-s − 0.474·40-s − 0.937·41-s + 1.17·46-s − 1.75·47-s − 49-s − 0.141·50-s − 0.554·52-s + 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3015 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3015 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3015\)    =    \(3^{2} \cdot 5 \cdot 67\)
Sign: $1$
Analytic conductor: \(24.0748\)
Root analytic conductor: \(4.90661\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3015,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9853457827\)
\(L(\frac12)\) \(\approx\) \(0.9853457827\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
67 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.524938276906474846841795068167, −8.142237019281881376697064078871, −7.56585813576836116271146411242, −6.54841296108664801340741209034, −5.68221115513478548651262709107, −4.81870639342071423223660557558, −3.92160420674737471960996206735, −3.25249076314348644933967911462, −1.70269532217990211821603827162, −0.71394829430623663651197723082, 0.71394829430623663651197723082, 1.70269532217990211821603827162, 3.25249076314348644933967911462, 3.92160420674737471960996206735, 4.81870639342071423223660557558, 5.68221115513478548651262709107, 6.54841296108664801340741209034, 7.56585813576836116271146411242, 8.142237019281881376697064078871, 8.524938276906474846841795068167

Graph of the $Z$-function along the critical line