Properties

Label 2-298908-1.1-c1-0-10
Degree $2$
Conductor $298908$
Sign $-1$
Analytic cond. $2386.79$
Root an. cond. $48.8548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s + 4·11-s + 2·13-s + 2·17-s − 23-s − 25-s − 4·29-s + 4·35-s − 2·37-s − 2·43-s + 12·47-s − 3·49-s + 2·53-s + 8·55-s − 12·59-s − 14·61-s + 4·65-s − 2·67-s + 6·73-s + 8·77-s − 6·79-s + 4·83-s + 4·85-s + 18·89-s + 4·91-s − 6·97-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s + 1.20·11-s + 0.554·13-s + 0.485·17-s − 0.208·23-s − 1/5·25-s − 0.742·29-s + 0.676·35-s − 0.328·37-s − 0.304·43-s + 1.75·47-s − 3/7·49-s + 0.274·53-s + 1.07·55-s − 1.56·59-s − 1.79·61-s + 0.496·65-s − 0.244·67-s + 0.702·73-s + 0.911·77-s − 0.675·79-s + 0.439·83-s + 0.433·85-s + 1.90·89-s + 0.419·91-s − 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 298908 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298908 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(298908\)    =    \(2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2386.79\)
Root analytic conductor: \(48.8548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 298908,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95095867024584, −12.34003292842190, −12.01516976571999, −11.60839717077058, −11.02399857980124, −10.66045992173144, −10.24047616884072, −9.545557992596505, −9.269085796629659, −8.925784044306098, −8.315596645698354, −7.787961108837235, −7.412926180087988, −6.722074262461877, −6.321046617085677, −5.691506090247254, −5.640863408790341, −4.706839082760582, −4.445685599897852, −3.652034927696968, −3.398111504510288, −2.494086555126374, −1.955470217390890, −1.422606207191134, −1.083267786067296, 0, 1.083267786067296, 1.422606207191134, 1.955470217390890, 2.494086555126374, 3.398111504510288, 3.652034927696968, 4.445685599897852, 4.706839082760582, 5.640863408790341, 5.691506090247254, 6.321046617085677, 6.722074262461877, 7.412926180087988, 7.787961108837235, 8.315596645698354, 8.925784044306098, 9.269085796629659, 9.545557992596505, 10.24047616884072, 10.66045992173144, 11.02399857980124, 11.60839717077058, 12.01516976571999, 12.34003292842190, 12.95095867024584

Graph of the $Z$-function along the critical line