Properties

Label 2-29400-1.1-c1-0-40
Degree $2$
Conductor $29400$
Sign $1$
Analytic cond. $234.760$
Root an. cond. $15.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 4·11-s − 2·13-s + 2·17-s + 4·19-s + 8·23-s − 27-s + 6·29-s − 8·31-s − 4·33-s − 6·37-s + 2·39-s + 6·41-s − 4·43-s − 2·51-s + 2·53-s − 4·57-s − 4·59-s + 2·61-s + 4·67-s − 8·69-s + 8·71-s + 10·73-s − 8·79-s + 81-s − 4·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.20·11-s − 0.554·13-s + 0.485·17-s + 0.917·19-s + 1.66·23-s − 0.192·27-s + 1.11·29-s − 1.43·31-s − 0.696·33-s − 0.986·37-s + 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.280·51-s + 0.274·53-s − 0.529·57-s − 0.520·59-s + 0.256·61-s + 0.488·67-s − 0.963·69-s + 0.949·71-s + 1.17·73-s − 0.900·79-s + 1/9·81-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29400\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(234.760\)
Root analytic conductor: \(15.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 29400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.279550535\)
\(L(\frac12)\) \(\approx\) \(2.279550535\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.15814000313491, −14.54015046337484, −14.22222427187212, −13.64140932005695, −12.79397814403659, −12.56895507421066, −11.84583449273832, −11.54301820761030, −10.92863880481933, −10.37098223423432, −9.721109928460394, −9.231400422182988, −8.791000323463798, −7.968061500225451, −7.199954245786336, −6.976165337503814, −6.286517914378789, −5.567340254086141, −5.047680771196692, −4.516152268909338, −3.598197994882597, −3.195291957952036, −2.161545243570202, −1.286357493252550, −0.6771319214532245, 0.6771319214532245, 1.286357493252550, 2.161545243570202, 3.195291957952036, 3.598197994882597, 4.516152268909338, 5.047680771196692, 5.567340254086141, 6.286517914378789, 6.976165337503814, 7.199954245786336, 7.968061500225451, 8.791000323463798, 9.231400422182988, 9.721109928460394, 10.37098223423432, 10.92863880481933, 11.54301820761030, 11.84583449273832, 12.56895507421066, 12.79397814403659, 13.64140932005695, 14.22222427187212, 14.54015046337484, 15.15814000313491

Graph of the $Z$-function along the critical line