Properties

Label 2-293046-1.1-c1-0-61
Degree $2$
Conductor $293046$
Sign $-1$
Analytic cond. $2339.98$
Root an. cond. $48.3733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 3·5-s − 6-s + 4·7-s − 8-s + 9-s − 3·10-s − 3·11-s + 12-s − 4·14-s + 3·15-s + 16-s − 18-s − 8·19-s + 3·20-s + 4·21-s + 3·22-s + 6·23-s − 24-s + 4·25-s + 27-s + 4·28-s + 3·29-s − 3·30-s + 7·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s − 0.904·11-s + 0.288·12-s − 1.06·14-s + 0.774·15-s + 1/4·16-s − 0.235·18-s − 1.83·19-s + 0.670·20-s + 0.872·21-s + 0.639·22-s + 1.25·23-s − 0.204·24-s + 4/5·25-s + 0.192·27-s + 0.755·28-s + 0.557·29-s − 0.547·30-s + 1.25·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(293046\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2339.98\)
Root analytic conductor: \(48.3733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 293046,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88950124678664, −12.62200608648792, −11.97815830929758, −11.39808199236315, −10.89169710183873, −10.55323902147867, −10.18867783970471, −9.827700980059408, −9.097410993426182, −8.657463548694015, −8.511051926688242, −7.950929098583563, −7.540566194690964, −6.797314058174300, −6.536657901134762, −5.912655356445281, −5.290038379330845, −4.838211684206579, −4.569850909738155, −3.663959081474862, −2.895168591230494, −2.472006311971487, −1.975376760083953, −1.584265412205682, −1.012215905511599, 0, 1.012215905511599, 1.584265412205682, 1.975376760083953, 2.472006311971487, 2.895168591230494, 3.663959081474862, 4.569850909738155, 4.838211684206579, 5.290038379330845, 5.912655356445281, 6.536657901134762, 6.797314058174300, 7.540566194690964, 7.950929098583563, 8.511051926688242, 8.657463548694015, 9.097410993426182, 9.827700980059408, 10.18867783970471, 10.55323902147867, 10.89169710183873, 11.39808199236315, 11.97815830929758, 12.62200608648792, 12.88950124678664

Graph of the $Z$-function along the critical line