Properties

Label 2-28665-1.1-c1-0-36
Degree $2$
Conductor $28665$
Sign $-1$
Analytic cond. $228.891$
Root an. cond. $15.1291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5-s + 13-s + 4·16-s + 3·17-s + 8·19-s + 2·20-s + 3·23-s + 25-s − 6·29-s − 4·31-s + 2·37-s − 9·41-s − 4·43-s − 6·47-s − 2·52-s − 9·53-s + 15·59-s + 5·61-s − 8·64-s − 65-s − 13·67-s − 6·68-s + 15·71-s − 13·73-s − 16·76-s + 8·79-s + ⋯
L(s)  = 1  − 4-s − 0.447·5-s + 0.277·13-s + 16-s + 0.727·17-s + 1.83·19-s + 0.447·20-s + 0.625·23-s + 1/5·25-s − 1.11·29-s − 0.718·31-s + 0.328·37-s − 1.40·41-s − 0.609·43-s − 0.875·47-s − 0.277·52-s − 1.23·53-s + 1.95·59-s + 0.640·61-s − 64-s − 0.124·65-s − 1.58·67-s − 0.727·68-s + 1.78·71-s − 1.52·73-s − 1.83·76-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28665\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(228.891\)
Root analytic conductor: \(15.1291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 28665,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.40260234663807, −14.74554475129629, −14.49767530714130, −13.84596000773737, −13.26062100611423, −12.97560118380935, −12.30081323698870, −11.57274741091428, −11.44571738516112, −10.48671075944861, −9.977962734507026, −9.461045475867676, −8.993863687238278, −8.355300394585740, −7.764456660438483, −7.379533635044220, −6.622559079188114, −5.763446602841568, −5.154060940580678, −4.933242662178190, −3.834323328071180, −3.535926129583251, −2.928349315939761, −1.639169043504996, −0.9667387989568812, 0, 0.9667387989568812, 1.639169043504996, 2.928349315939761, 3.535926129583251, 3.834323328071180, 4.933242662178190, 5.154060940580678, 5.763446602841568, 6.622559079188114, 7.379533635044220, 7.764456660438483, 8.355300394585740, 8.993863687238278, 9.461045475867676, 9.977962734507026, 10.48671075944861, 11.44571738516112, 11.57274741091428, 12.30081323698870, 12.97560118380935, 13.26062100611423, 13.84596000773737, 14.49767530714130, 14.74554475129629, 15.40260234663807

Graph of the $Z$-function along the critical line