Properties

Label 2-284427-1.1-c1-0-45
Degree $2$
Conductor $284427$
Sign $-1$
Analytic cond. $2271.16$
Root an. cond. $47.6566$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 4·5-s − 3·8-s + 4·10-s + 11-s − 16-s − 17-s − 4·19-s − 4·20-s + 22-s + 6·23-s + 11·25-s + 2·29-s + 4·31-s + 5·32-s − 34-s − 8·37-s − 4·38-s − 12·40-s − 8·43-s − 44-s + 6·46-s + 8·47-s − 7·49-s + 11·50-s − 10·53-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 1.78·5-s − 1.06·8-s + 1.26·10-s + 0.301·11-s − 1/4·16-s − 0.242·17-s − 0.917·19-s − 0.894·20-s + 0.213·22-s + 1.25·23-s + 11/5·25-s + 0.371·29-s + 0.718·31-s + 0.883·32-s − 0.171·34-s − 1.31·37-s − 0.648·38-s − 1.89·40-s − 1.21·43-s − 0.150·44-s + 0.884·46-s + 1.16·47-s − 49-s + 1.55·50-s − 1.37·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 284427 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 284427 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(284427\)    =    \(3^{2} \cdot 11 \cdot 13^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2271.16\)
Root analytic conductor: \(47.6566\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 284427,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
11 \( 1 - T \)
13 \( 1 \)
17 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + p T^{2} \) 1.7.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00819835306575, −12.66841908277363, −12.33477938301991, −11.69300513904695, −11.00010975759145, −10.76022386116947, −10.04546500001916, −9.709390469439352, −9.424467970169874, −8.783714288793659, −8.504011327293396, −8.071767273783063, −6.845540776994032, −6.783247259924725, −6.400564014626401, −5.675048749265004, −5.332937246862219, −5.012274630986095, −4.398953968666671, −3.905035907198913, −3.117481084726872, −2.779013727981287, −2.147463666060599, −1.531336044656143, −0.9399667134962462, 0, 0.9399667134962462, 1.531336044656143, 2.147463666060599, 2.779013727981287, 3.117481084726872, 3.905035907198913, 4.398953968666671, 5.012274630986095, 5.332937246862219, 5.675048749265004, 6.400564014626401, 6.783247259924725, 6.845540776994032, 8.071767273783063, 8.504011327293396, 8.783714288793659, 9.424467970169874, 9.709390469439352, 10.04546500001916, 10.76022386116947, 11.00010975759145, 11.69300513904695, 12.33477938301991, 12.66841908277363, 13.00819835306575

Graph of the $Z$-function along the critical line