Properties

Label 2-283920-1.1-c1-0-193
Degree $2$
Conductor $283920$
Sign $-1$
Analytic cond. $2267.11$
Root an. cond. $47.6142$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s + 4·11-s − 15-s + 6·17-s + 8·19-s + 21-s + 4·23-s + 25-s − 27-s − 2·29-s − 4·31-s − 4·33-s − 35-s − 10·37-s + 2·41-s − 8·43-s + 45-s + 8·47-s + 49-s − 6·51-s + 6·53-s + 4·55-s − 8·57-s + 8·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.258·15-s + 1.45·17-s + 1.83·19-s + 0.218·21-s + 0.834·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.718·31-s − 0.696·33-s − 0.169·35-s − 1.64·37-s + 0.312·41-s − 1.21·43-s + 0.149·45-s + 1.16·47-s + 1/7·49-s − 0.840·51-s + 0.824·53-s + 0.539·55-s − 1.05·57-s + 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283920\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2267.11\)
Root analytic conductor: \(47.6142\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 283920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.04519597206535, −12.26342833530177, −12.06778996314699, −11.71290375588358, −11.23840027739654, −10.58575996994993, −10.17704159309400, −9.792243168466355, −9.355559668088150, −8.869538179536310, −8.531763566656359, −7.535096402759712, −7.259747651879622, −7.029912879084032, −6.276941928427544, −5.691774422556649, −5.591834392404889, −4.970942003686707, −4.390623885798073, −3.586542751320182, −3.379828988145663, −2.818077435570815, −1.847790782711235, −1.284195685329704, −0.9849371566951925, 0, 0.9849371566951925, 1.284195685329704, 1.847790782711235, 2.818077435570815, 3.379828988145663, 3.586542751320182, 4.390623885798073, 4.970942003686707, 5.591834392404889, 5.691774422556649, 6.276941928427544, 7.029912879084032, 7.259747651879622, 7.535096402759712, 8.531763566656359, 8.869538179536310, 9.355559668088150, 9.792243168466355, 10.17704159309400, 10.58575996994993, 11.23840027739654, 11.71290375588358, 12.06778996314699, 12.26342833530177, 13.04519597206535

Graph of the $Z$-function along the critical line