Properties

Label 2-283140-1.1-c1-0-18
Degree $2$
Conductor $283140$
Sign $-1$
Analytic cond. $2260.88$
Root an. cond. $47.5487$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s + 13-s − 2·17-s − 4·19-s + 8·23-s + 25-s − 6·29-s − 10·31-s − 4·35-s − 8·37-s − 10·43-s + 8·47-s + 9·49-s − 8·53-s − 4·61-s + 65-s + 8·67-s − 8·71-s − 2·73-s + 4·79-s − 2·83-s − 2·85-s + 10·89-s − 4·91-s − 4·95-s + 12·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s + 0.277·13-s − 0.485·17-s − 0.917·19-s + 1.66·23-s + 1/5·25-s − 1.11·29-s − 1.79·31-s − 0.676·35-s − 1.31·37-s − 1.52·43-s + 1.16·47-s + 9/7·49-s − 1.09·53-s − 0.512·61-s + 0.124·65-s + 0.977·67-s − 0.949·71-s − 0.234·73-s + 0.450·79-s − 0.219·83-s − 0.216·85-s + 1.05·89-s − 0.419·91-s − 0.410·95-s + 1.21·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 283140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(283140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2260.88\)
Root analytic conductor: \(47.5487\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 283140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88959888782650, −12.77322859532356, −12.20559675442280, −11.53778423698760, −10.97574176896079, −10.72689244292060, −10.22069650014749, −9.694331003690227, −9.238982442227176, −8.815937664388486, −8.693481604272021, −7.700362621776147, −7.234806537812367, −6.815790376872235, −6.421792364718548, −5.959593514121512, −5.388215478408261, −4.972600250668387, −4.266736562996541, −3.526838743629294, −3.397343112411363, −2.736070966958344, −1.999186189430442, −1.619457215769039, −0.6001701326775535, 0, 0.6001701326775535, 1.619457215769039, 1.999186189430442, 2.736070966958344, 3.397343112411363, 3.526838743629294, 4.266736562996541, 4.972600250668387, 5.388215478408261, 5.959593514121512, 6.421792364718548, 6.815790376872235, 7.234806537812367, 7.700362621776147, 8.693481604272021, 8.815937664388486, 9.238982442227176, 9.694331003690227, 10.22069650014749, 10.72689244292060, 10.97574176896079, 11.53778423698760, 12.20559675442280, 12.77322859532356, 12.88959888782650

Graph of the $Z$-function along the critical line